2.1.50 Problem 50
Internal
problem
ID
[10409]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
50
Date
solved
:
Monday, December 08, 2025 at 08:47:27 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
2.1.50.1 second order ode missing x
1.428 (sec)
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode.
Solved by reduction of order by using substitution which makes the dependent variable \(y\) an
independent variable. Using \begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} y p \left (y \right ) \left (\frac {d}{d y}p \left (y \right )\right )+p \left (y \right )^{3} = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
2.1.50.2 Solved by factoring the differential equation
Time used: 0.244 (sec)
\begin{align*}
y p p^{\prime }+p^{3}&=0 \\
\end{align*}
Writing the ode as \begin{align*} \left (p\right )\left (p^{\prime } y +p^{2}\right )&=0 \end{align*}
Therefore we need to solve the following equations
\begin{align*}
\tag{1} p &= 0 \\
\tag{2} p^{\prime } y +p^{2} &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Entering zero order ode solverSolving for \(p\) from
\begin{align*} p = 0 \end{align*}
Solving gives
\begin{align*}
p &= 0 \\
\end{align*}
Solving equation (2)
Entering first order ode separable solverThe ode
\begin{equation}
p^{\prime } = -\frac {p^{2}}{y}
\end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }&= -\frac {p^{2}}{y}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= -\frac {1}{y}\\ g(p) &= p^{2} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy} \\
\int { \frac {1}{p^{2}}\,dp} &= \int { -\frac {1}{y} \,dy} \\
\end{align*}
\[
-\frac {1}{p}=\ln \left (\frac {1}{y}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding
for what values \(g(p)\) is zero, since we had to divide by this above. Solving \(g(p)=0\) or \[
p^{2}=0
\]
for \(p\) gives
\begin{align*} p&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
-\frac {1}{p} &= \ln \left (\frac {1}{y}\right )+c_1 \\
p &= 0 \\
\end{align*}
Solving for \(p\) gives \begin{align*}
p &= 0 \\
p &= -\frac {1}{\ln \left (\frac {1}{y}\right )+c_1} \\
\end{align*}
Summary of solutions found
\begin{align*}
p &= 0 \\
p &= -\frac {1}{\ln \left (\frac {1}{y}\right )+c_1} \\
\end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first
order ode to solve which is \begin{align*} y^{\prime } = 0 \end{align*}
Entering first order ode quadrature solverSince the ode has the form \(y^{\prime }=f(x)\), then we only need to
integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_2 \\ y &= c_2 \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = -\frac {1}{\ln \left (\frac {1}{y}\right )+c_1} \end{align*}
Entering first order ode autonomous solverIntegrating gives
\begin{align*} \int \left (-\ln \left (\frac {1}{y}\right )-c_1 \right )d y &= dx\\ -c_1 y -\ln \left (\frac {1}{y}\right ) y -y&= x +c_3 \end{align*}
Simplifying the above gives
\begin{align*}
-y \left (\ln \left (\frac {1}{y}\right )+c_1 +1\right ) &= x +c_3 \\
\end{align*}
Solving for \(y\) from the above solution(s) gives (after possible removing
of solutions that do not verify) \begin{align*} y&=c_2\\ y&=\frac {x +c_3}{\operatorname {LambertW}\left (\left (x +c_3 \right ) {\mathrm e}^{-1-c_1}\right )} \end{align*}
Summary of solutions found
\begin{align*}
y &= c_2 \\
y &= \frac {x +c_3}{\operatorname {LambertW}\left (\left (x +c_3 \right ) {\mathrm e}^{-1-c_1}\right )} \\
\end{align*}
2.1.50.3 ✓ Maple. Time used: 0.015 (sec). Leaf size: 27
ode:=diff(y(x),x)^3+y(x)*diff(diff(y(x),x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= 0 \\
y &= c_1 \\
y &= \frac {c_2 +x}{\operatorname {LambertW}\left (\left (c_2 +x \right ) {\mathrm e}^{c_1 -1}\right )} \\
\end{align*}
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)+_b(_a)^3/_a = 0, _b(_a)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right ) \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+\left (\frac {d}{d x}y \left (x \right )\right )^{3}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Define new dependent variable}\hspace {3pt} u \\ {} & {} & u \left (x \right )=\frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Compute}\hspace {3pt} \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ {} & {} & \frac {d}{d x}u \left (x \right )=\frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Use chain rule on the lhs}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right ) \left (\frac {d}{d y}u \left (y \right )\right )=\frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Substitute in the definition of}\hspace {3pt} u \\ {} & {} & u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )=\frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Make substitutions}\hspace {3pt} \frac {d}{d x}y \left (x \right )=u \left (y \right ),\frac {d^{2}}{d x^{2}}y \left (x \right )=u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )\hspace {3pt}\textrm {to reduce order of ODE}\hspace {3pt} \\ {} & {} & y u \left (y \right ) \left (\frac {d}{d y}u \left (y \right )\right )+u \left (y \right )^{3}=0 \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d y}u \left (y \right )=-\frac {u \left (y \right )^{2}}{y} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d y}u \left (y \right )}{u \left (y \right )^{2}}=-\frac {1}{y} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} y \\ {} & {} & \int \frac {\frac {d}{d y}u \left (y \right )}{u \left (y \right )^{2}}d y =\int -\frac {1}{y}d y +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{u \left (y \right )}=-\ln \left (y \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} u \left (y \right ) \\ {} & {} & u \left (y \right )=\frac {1}{\ln \left (y \right )-\mathit {C1}} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & u \left (y \right )=\frac {1}{\ln \left (y \right )+\mathit {C1}} \\ \bullet & {} & \textrm {Solve 1st ODE for}\hspace {3pt} u \left (y \right ) \\ {} & {} & u \left (y \right )=\frac {1}{\ln \left (y \right )+\mathit {C1}} \\ \bullet & {} & \textrm {Revert to original variables with substitution}\hspace {3pt} u \left (y \right )=\frac {d}{d x}y \left (x \right ),y =y \left (x \right ) \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {1}{\ln \left (y \left (x \right )\right )+\mathit {C1}} \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {1}{\ln \left (y \left (x \right )\right )+\mathit {C1}} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right ) \left (\ln \left (y \left (x \right )\right )+\mathit {C1} \right )=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right ) \left (\ln \left (y \left (x \right )\right )+\mathit {C1} \right )d x =\int 1d x +\mathit {C2} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right ) \mathit {C1} +y \left (x \right ) \ln \left (y \left (x \right )\right )-y \left (x \right )=x +\mathit {C2} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )={\mathrm e}^{\mathit {LambertW}\left (\left (x +\mathit {C2} \right ) {\mathrm e}^{\mathit {C1} -1}\right )-\mathit {C1} +1} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {x +\mathit {C2}}{\mathit {LambertW}\left (\left (x +\mathit {C2} \right ) {\mathrm e}^{\mathit {C1} -1}\right )} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {x +\mathit {C2}}{\mathit {LambertW}\left (\left (x +\mathit {C2} \right ) \mathit {C1} \right )} \end {array} \]
2.1.50.4 ✓ Mathematica. Time used: 60.062 (sec). Leaf size: 26
ode=y[x]*D[y[x],{x,2}]+D[y[x],x]^3==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {x+c_2}{W\left (e^{-1-c_1} (x+c_2)\right )} \end{align*}
2.1.50.5 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(y(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**3,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (-y(x)*Derivative(y(x), (x, 2)))**(1/3)/2 - sqrt(3)*I*(-y(x)*Derivative(y(x), (x, 2)))**(1/3)/2 + Derivative(y(x), x) cannot be solved by the factorable group method