Internal
problem
ID
[9126]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 02:17:05 PM
CAS
classification
:
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=diff(diff(y(x),x),x)+(1-x)*diff(y(x),x)+y(x)^2*diff(y(x),x)^2 = 0; dsolve(ode,y(x), singsol=all);
Maple trace
Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville <- 2nd_order Liouville successful
ode=D[y[x],{x,2}]+(1-x)*D[y[x],x]+y[x]^2*(D[y[x],x])^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - x)*Derivative(y(x), x) + y(x)**2*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(x + sqrt(x**2 - 2*x - 4*y(x)**2*Derivative(y(x), (x, 2)) + 1) - 1)/(2*y(x)**2) + Derivative(y(x), x) cannot be solved by the factorable group method