2.2.4 problem 4

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8803]
Book : Second order enumerated odes
Section : section 2
Problem number : 4
Date solved : Wednesday, December 18, 2024 at 02:16:36 AM
CAS classification : [_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Solve

\begin{align*} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2}&=0 \end{align*}

Maple step by step solution

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
<- 2nd_order Liouville successful`
 
Maple dsolve solution

Solving time : 0.009 (sec)
Leaf size : 34

dsolve(diff(diff(y(x),x),x)+(sin(x)+2*x)*diff(y(x),x)+cos(y(x))*y(x)*diff(y(x),x)^2 = 0, 
       y(x),singsol=all)
 
\[ \int _{}^{y}{\mathrm e}^{\cos \left (\textit {\_a} \right )+\textit {\_a} \sin \left (\textit {\_a} \right )}d \textit {\_a} -c_{1} \left (\int {\mathrm e}^{-x^{2}+\cos \left (x \right )}d x \right )-c_{2} = 0 \]
Mathematica DSolve solution

Solving time : 1.456 (sec)
Leaf size : 53

DSolve[{D[y[x],{x,2}]+(Sin[x]+2*x)*D[y[x],x]+Cos[y[x]]*y[x]*(D[y[x],x])^2==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}e^{\cos (K[1])+K[1] \sin (K[1])}dK[1]\&\right ]\left [\int _1^x-e^{\cos (K[2])-K[2]^2} c_1dK[2]+c_2\right ] \]