2.2.21 problem 22

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8820]
Book : Second order enumerated odes
Section : section 2
Problem number : 22
Date solved : Wednesday, December 18, 2024 at 02:16:39 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

Solve

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y&=4 \cos \left (\ln \left (1+x \right )\right ) \end{align*}

Maple step by step solution

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Kummer 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      -> hypergeometric 
         -> heuristic approach 
         <- heuristic approach successful 
      <- hypergeometric successful 
   <- special function solution successful 
<- solving first the homogeneous part of the ODE successful`
 
Maple dsolve solution

Solving time : 0.108 (sec)
Leaf size : 280

dsolve((x^2+1)*diff(diff(y(x),x),x)+(x+1)*diff(y(x),x)+y(x) = 4*cos(ln(x+1)), 
       y(x),singsol=all)
 
\[ y = \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) c_{2} +\left (x +i\right )^{\frac {1}{2}-\frac {i}{2}} \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {i}{2}, \frac {1}{2}-\frac {3 i}{2}\right ], \left [\frac {3}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) c_{1} -80 \left (\int \frac {\left (i x -1\right ) \cos \left (\ln \left (x +1\right )\right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {i}{2}, \frac {1}{2}-\frac {3 i}{2}\right ], \left [\frac {3}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )}{\left (x^{2}+1\right ) \left (10 \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {i}{2}, \frac {1}{2}-\frac {3 i}{2}\right ], \left [\frac {3}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) \left (\left (-1-i+\left (-1+i\right ) x \right ) \operatorname {hypergeom}\left (\left [1-i, 1+i\right ], \left [\frac {3}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )+\left (1+i\right ) \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )\right )+\operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}+\frac {i}{2}, \frac {3}{2}-\frac {3 i}{2}\right ], \left [\frac {5}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) \left (1+7 i+\left (7-i\right ) x \right )\right )}d x \right ) \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )-80 \left (\int \frac {\operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) \cos \left (\ln \left (x +1\right )\right ) \left (x +i\right )^{\frac {1}{2}+\frac {i}{2}}}{7 \left (\frac {10 \left (\left (1-i+\left (-1-i\right ) x \right ) \operatorname {hypergeom}\left (\left [1-i, 1+i\right ], \left [\frac {3}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )+\left (-1+i\right ) \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )\right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {i}{2}, \frac {1}{2}-\frac {3 i}{2}\right ], \left [\frac {3}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )}{7}+\left (-1+\frac {i}{7}+\left (\frac {1}{7}+i\right ) x \right ) \operatorname {hypergeom}\left (\left [i, -i\right ], \left [\frac {1}{2}+\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}+\frac {i}{2}, \frac {3}{2}-\frac {3 i}{2}\right ], \left [\frac {5}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right )\right ) \left (x^{2}+1\right )}d x \right ) \left (x +i\right )^{\frac {1}{2}-\frac {i}{2}} \operatorname {hypergeom}\left (\left [\frac {1}{2}+\frac {i}{2}, \frac {1}{2}-\frac {3 i}{2}\right ], \left [\frac {3}{2}-\frac {i}{2}\right ], \frac {1}{2}-\frac {i x}{2}\right ) \]
Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

DSolve[{(1+x^2)*D[y[x],{x,2}]+(1+x)*D[y[x],x]+y[x]==4*Cos[Log[1+x]],{}}, 
       y[x],x,IncludeSingularSolutions->True]
 

Not solved