2.2.22 problem 23
Internal
problem
ID
[8557]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
23
Date
solved
:
Sunday, November 10, 2024 at 04:03:50 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Solve
\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y&=0 \end{align*}
Solved as second order ode using change of variable on x method 2
Time used: 0.391 (sec)
In normal form the ode
\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y&=0 \tag {1} \end{align*}
Becomes
\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=\tan \left (x \right )\\ q \left (x \right )&=\cos \left (x \right )^{2} \end{align*}
Applying change of variables \(\tau = g \left (x \right )\) to (2) gives
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}
Where \(\tau \) is the new independent variable, and
\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}
Let \(p_{1} = 0\). Eq (4) simplifies to
\begin{align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end{align*}
This ode is solved resulting in
\begin{align*} \tau &= \int {\mathrm e}^{-\left (\int p \left (x \right )d x \right )}d x\\ &= \int {\mathrm e}^{-\left (\int \tan \left (x \right )d x \right )}d x\\ &= \int e^{\ln \left (\cos \left (x \right )\right )} \,dx\\ &= \int \cos \left (x \right )d x\\ &= \sin \left (x \right )\tag {6} \end{align*}
Using (6) to evaluate \(q_{1}\) from (5) gives
\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {\cos \left (x \right )^{2}}{\cos \left (x \right )^{2}}\\ &= 1\tag {7} \end{align*}
Substituting the above in (3) and noting that now \(p_{1} = 0\) results in
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+y \left (\tau \right )&=0 \end{align*}
The above ode is now solved for \(y \left (\tau \right )\).This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is
\[ A y''(\tau ) + B y'(\tau ) + C y(\tau ) = 0 \]
Where in the above \(A=1, B=0, C=1\). Let the solution be \(y \left (\tau \right )=e^{\lambda \tau }\). Substituting
this into the ODE gives
\[ \lambda ^{2} {\mathrm e}^{\tau \lambda }+{\mathrm e}^{\tau \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2)
throughout by \(e^{\lambda \tau }\) gives
\[ \lambda ^{2}+1 = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots
determine the general solution form.Using the quadratic formula
\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=0, C=1\) into the
above gives
\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (1\right )}\\ &= \pm i \end{align*}
Hence
\begin{align*} \lambda _1 &= + i\\ \lambda _2 &= - i \end{align*}
Which simplifies to
\begin{align*}
\lambda _1 &= i \\
\lambda _2 &= -i \\
\end{align*}
Since roots are complex conjugate of each others, then let the
roots be
\[
\lambda _{1,2} = \alpha \pm i \beta
\]
Where \(\alpha =0\) and \(\beta =1\). Therefore the final solution, when using Euler relation,
can be written as
\[
y \left (\tau \right ) = e^{\alpha \tau } \left ( c_1 \cos (\beta \tau ) + c_2 \sin (\beta \tau ) \right )
\]
Which becomes
\[
y \left (\tau \right ) = e^{0}\left (c_1 \cos \left (\tau \right )+c_2 \sin \left (\tau \right )\right )
\]
Or
\[
y \left (\tau \right ) = c_1 \cos \left (\tau \right )+c_2 \sin \left (\tau \right )
\]
Will add steps showing solving for IC
soon.
The above solution is now transformed back to \(y\) using (6) which results in
\[
y = c_1 \cos \left (\sin \left (x \right )\right )+c_2 \sin \left (\sin \left (x \right )\right )
\]
Will add steps
showing solving for IC soon.
Summary of solutions found
\begin{align*}
y &= c_1 \cos \left (\sin \left (x \right )\right )+c_2 \sin \left (\sin \left (x \right )\right ) \\
\end{align*}
Maple step by step solution
Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful
Change of variables used:
[x = arcsin(t)]
Linear ODE actually solved:
(-2*t^2+2)*u(t)+(-2*t^2+2)*diff(diff(u(t),t),t) = 0
<- change of variables successful`
Maple dsolve solution
Solving time : 0.105
(sec)
Leaf size : 15
dsolve(diff(diff(y(x),x),x)+tan(x)*diff(y(x),x)+cos(x)^2*y(x) = 0,
y(x),singsol=all)
\[
y = c_{1} \sin \left (\sin \left (x \right )\right )+c_{2} \cos \left (\sin \left (x \right )\right )
\]
Mathematica DSolve solution
Solving time : 0.093
(sec)
Leaf size : 18
DSolve[{D[y[x],{x,2}]+Tan[x]*D[y[x],x]+Cos[x]^2*y[x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to c_2 \sin (\sin (x))+c_1 \cos (\sin (x))
\]