27.3 problem 13

27.3.1 Maple step by step solution

Internal problem ID [10836]
Internal file name [OUTPUT/9818_Sunday_June_19_2022_09_26_10_PM_23841255/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 2, Second-Order Differential Equations. section 2.1.2-2 Equation of form \(y''+f(x)y'+g(x)y=0\)
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y=0} \]

27.3.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+a y^{\prime }+\left (-b \,x^{2}-c \right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =\max \left (0, -m \right )}{\sum }}a_{k} x^{k +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =\max \left (0, -m \right )+m}{\sum }}a_{k -m} x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & y^{\prime }=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k} k \,x^{k -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +1} \left (k +1\right ) x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) x^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{1} a -a_{0} c +2 a_{2}+\left (2 a a_{2}-a_{1} c +6 a_{3}\right ) x +\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k +2} \left (k +2\right ) \left (k +1\right )+a a_{k +1} \left (k +1\right )-a_{k} c -a_{k -2} b \right ) x^{k}\right )=0 \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [2 a_{2}+a_{1} a -a_{0} c =0, 2 a a_{2}-a_{1} c +6 a_{3}=0\right ] \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & \left \{a_{2}=-\frac {a_{1} a}{2}+\frac {a_{0} c}{2}, a_{3}=\frac {1}{6} a_{1} a^{2}-\frac {1}{6} a_{0} a c +\frac {1}{6} a_{1} c \right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{2}+3 k +2\right ) a_{k +2}+a a_{k +1} k +a a_{k +1}-a_{k -2} b -a_{k} c =0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \left (\left (k +2\right )^{2}+3 k +8\right ) a_{k +4}+a a_{k +3} \left (k +2\right )+a a_{k +3}-a_{k} b -a_{k +2} c =0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +4}=-\frac {a k a_{k +3}+3 a a_{k +3}-a_{k} b -a_{k +2} c}{k^{2}+7 k +12}, a_{2}=-\frac {a_{1} a}{2}+\frac {a_{0} c}{2}, a_{3}=\frac {1}{6} a_{1} a^{2}-\frac {1}{6} a_{0} a c +\frac {1}{6} a_{1} c \right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
   <- Kummer successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.079 (sec). Leaf size: 74

dsolve(diff(y(x),x$2)+a*diff(y(x),x)-(b*x^2+c)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = {\mathrm e}^{-\frac {x \left (\sqrt {b}\, x +a \right )}{2}} x \left (\operatorname {KummerM}\left (\frac {a^{2}+12 \sqrt {b}+4 c}{16 \sqrt {b}}, \frac {3}{2}, \sqrt {b}\, x^{2}\right ) c_{1} +\operatorname {KummerU}\left (\frac {a^{2}+12 \sqrt {b}+4 c}{16 \sqrt {b}}, \frac {3}{2}, \sqrt {b}\, x^{2}\right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.088 (sec). Leaf size: 96

DSolve[y''[x]+a*y'[x]-(b*x^2+c)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{-\frac {1}{2} x \left (a+\sqrt {b} x\right )} \left (c_1 \operatorname {HermiteH}\left (\frac {-a^2-4 \left (c+\sqrt {b}\right )}{8 \sqrt {b}},\sqrt [4]{b} x\right )+c_2 \operatorname {Hypergeometric1F1}\left (\frac {a^2+4 \left (c+\sqrt {b}\right )}{16 \sqrt {b}},\frac {1}{2},\sqrt {b} x^2\right )\right ) \]