2.1.1 Problems not solved. All, arranged sequentially

Table 2.1: Problems not solved. All, arranged sequentially. [2211]

#

ID

ODE

CAS classification

Maple

Mma

Sympy

time(sec)

\(1\)

36

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

6.262

\(2\)

39

\begin{align*} y^{\prime }&=x^{2}+y^{2}-1 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

45.768

\(3\)

232

\begin{align*} y y^{\prime \prime }&=6 x^{4} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.269

\(4\)

416

\begin{align*} x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.060

\(5\)

417

\begin{align*} x^{3} y^{\prime }&=2 y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.092

\(6\)

459

\begin{align*} x^{2} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.254

\(7\)

460

\begin{align*} 3 x^{3} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.135

\(8\)

472

\begin{align*} x^{3} \left (1-x \right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.150

\(9\)

491

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.263

\(10\)

492

\begin{align*} x^{3} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.128

\(11\)

529

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

16.096

\(12\)

604

\begin{align*} x^{\prime }&=t x-{\mathrm e}^{t} y+\cos \left (t \right ) \\ y^{\prime }&={\mathrm e}^{-t} x+t^{2} y-\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.027

\(13\)

608

\begin{align*} x^{\prime }&=t x-y+{\mathrm e}^{t} z \\ y^{\prime }&=2 x+t^{2} y-z \\ z^{\prime }&={\mathrm e}^{-t} x+3 t y+t^{3} z \\ \end{align*}

system_of_ODEs

0.039

\(14\)

783

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+x^{2} y^{4} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.312

\(15\)

1058

\begin{align*} x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.046

\(16\)

1059

\begin{align*} x^{3} y^{\prime }&=2 y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.054

\(17\)

1135

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.769

\(18\)

1200

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

8.040

\(19\)

1203

\begin{align*} x \ln \left (x \right )+y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

9.362

\(20\)

1360

\begin{align*} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.556

\(21\)

1463

\begin{align*} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.040

\(22\)

1469

\begin{align*} t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

\(23\)

1470

\begin{align*} \left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

\(24\)

1471

\begin{align*} t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (1+t \right ) y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(25\)

1608

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{\sin \left (x \right )} \\ \end{align*}

[_Riccati]

12.157

\(26\)

1609

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x}+y}{x^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.193

\(27\)

1610

\begin{align*} y^{\prime }&=\tan \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.069

\(28\)

1611

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{\ln \left (y x \right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

8.737

\(29\)

1612

\begin{align*} y^{\prime }&=\left (x^{2}+y^{2}\right ) y^{{1}/{3}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.736

\(30\)

1614

\begin{align*} y^{\prime }&=\ln \left (1+x^{2}+y^{2}\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.581

\(31\)

1616

\begin{align*} y^{\prime }&=\sqrt {x^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.658

\(32\)

1618

\begin{align*} y^{\prime }&=\left (x^{2}+y^{2}\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.135

\(33\)

1689

\begin{align*} 2 x^{2}+8 y x +y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

3.234

\(34\)

1691

\begin{align*} y \sin \left (y x \right )+x y^{2} \cos \left (y x \right )+\left (x \sin \left (y x \right )+x y^{2} \cos \left (y x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.681

\(35\)

1752

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\left (6 x -8\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.689

\(36\)

1754

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

55.171

\(37\)

2346

\begin{align*} y^{\prime }&=y^{2}+\cos \left (t^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

67.116

\(38\)

2347

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

11.002

\(39\)

2349

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

68.148

\(40\)

2350

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_Riccati]

65.867

\(41\)

2351

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

80.920

\(42\)

2352

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.026

\(43\)

2353

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

[_Abel]

0.753

\(44\)

2355

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.183

\(45\)

2356

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.202

\(46\)

2441

\begin{align*} t \left (-2+t \right )^{2} y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.200

\(47\)

2444

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (1+t \right )}+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.299

\(48\)

2452

\begin{align*} t^{3} y^{\prime \prime }-y^{\prime } t -\left (t^{2}+\frac {5}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.102

\(49\)

2514

\begin{align*} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘x=_G(y,y’)‘]

62.806

\(50\)

2519

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

7.855

\(51\)

2522

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

10.286

\(52\)

2524

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

70.018

\(53\)

2525

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_Riccati]

80.147

\(54\)

2526

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

67.868

\(55\)

2527

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.835

\(56\)

2528

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

[_Abel]

0.868

\(57\)

2530

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.020

\(58\)

2531

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.059

\(59\)

2537

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+2 t \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.077

\(60\)

2539

\begin{align*} y^{\prime }&=\frac {t^{2}+y^{2}}{1+t +y^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_rational]

1.670

\(61\)

2591

\begin{align*} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y&=1+t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

\(62\)

2638

\begin{align*} t \left (-2+t \right )^{2} y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.316

\(63\)

2641

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (1+t \right )}+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.267

\(64\)

2658

\begin{align*} t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.123

\(65\)

2788

\begin{align*} x^{\prime }&=x-x^{2}-2 x y \\ y^{\prime }&=2 y-2 y^{2}-3 x y \\ \end{align*}

system_of_ODEs

0.038

\(66\)

2789

\begin{align*} x^{\prime }&=-b x y+m \\ y^{\prime }&=b x y-g y \\ \end{align*}

system_of_ODEs

0.046

\(67\)

2790

\begin{align*} x^{\prime }&=a x-b x y \\ y^{\prime }&=-c y+d x y \\ z^{\prime }&=z+x^{2}+y^{2} \\ \end{align*}

system_of_ODEs

0.047

\(68\)

2791

\begin{align*} x^{\prime }&=-x-x \,y^{2} \\ y^{\prime }&=-y-y \,x^{2} \\ z^{\prime }&=1-z+x^{2} \\ \end{align*}

system_of_ODEs

0.046

\(69\)

2792

\begin{align*} x^{\prime }&=x \,y^{2}-x \\ y^{\prime }&=x \sin \left (\pi y\right ) \\ \end{align*}

system_of_ODEs

0.046

\(70\)

2793

\begin{align*} x^{\prime }&=\cos \left (y\right ) \\ y^{\prime }&=\sin \left (x\right )-1 \\ \end{align*}

system_of_ODEs

0.037

\(71\)

2794

\begin{align*} x^{\prime }&=-1-y-{\mathrm e}^{x} \\ y^{\prime }&=x^{2}+y \left ({\mathrm e}^{x}-1\right ) \\ z^{\prime }&=x+\sin \left (z\right ) \\ \end{align*}

system_of_ODEs

0.056

\(72\)

2795

\begin{align*} x^{\prime }&=x-y^{2} \\ y^{\prime }&=x^{2}-y \\ z^{\prime }&={\mathrm e}^{z}-x \\ \end{align*}

system_of_ODEs

0.062

\(73\)

2811

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-\frac {\left (x_{1}^{2}+\sqrt {x_{1}^{2}+4 x_{2}^{2}}\right ) x_{1}}{2} \\ \end{align*}

system_of_ODEs

0.040

\(74\)

2813

\begin{align*} x^{\prime }&=x-x^{3}-x y \\ y^{\prime }&=2 y-y^{5}-y \,x^{4} \\ \end{align*}

system_of_ODEs

0.049

\(75\)

2814

\begin{align*} x^{\prime }&=x^{2}+y^{2}+1 \\ y^{\prime }&=x^{2}-y^{2} \\ \end{align*}

system_of_ODEs

0.049

\(76\)

2815

\begin{align*} x^{\prime }&=x^{2}+y^{2}-1 \\ y^{\prime }&=2 x y \\ \end{align*}

system_of_ODEs

0.082

\(77\)

2816

\begin{align*} x^{\prime }&=6 x-6 x^{2}-2 x y \\ y^{\prime }&=4 y-4 y^{2}-2 x y \\ \end{align*}

system_of_ODEs

0.048

\(78\)

2817

\begin{align*} x^{\prime }&=\tan \left (x+y\right ) \\ y^{\prime }&=x+x^{3} \\ \end{align*}

system_of_ODEs

0.059

\(79\)

2818

\begin{align*} x^{\prime }&={\mathrm e}^{y}-x \\ y^{\prime }&={\mathrm e}^{x}+y \\ \end{align*}

system_of_ODEs

0.061

\(80\)

2923

\begin{align*} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

57.472

\(81\)

2955

\begin{align*} y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

84.755

\(82\)

3002

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=x \left (-x^{2}+1\right ) \sqrt {y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_rational, _Bernoulli]

5.237

\(83\)

3286

\begin{align*} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 x^{2} y {y^{\prime }}^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.931

\(84\)

3289

\begin{align*} x y {y^{\prime }}^{2}+\left (y x -1\right ) y^{\prime }&=y \\ \end{align*}

[‘y=_G(x,y’)‘]

27.927

\(85\)

3370

\begin{align*} x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 y^{\prime } x -\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.217

\(86\)

3491

\begin{align*} -\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {y^{\prime \prime }}{y}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y}&=2 a^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

4.914

\(87\)

3497

\begin{align*} 2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}&=\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _nonlinear]]

0.076

\(88\)

3511

\begin{align*} y^{\prime \prime }+\frac {y}{z^{3}}&=0 \\ \end{align*}
Series expansion around \(z=0\).

[[_Emden, _Fowler]]

0.112

\(89\)

3677

\begin{align*} y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2}&=r \left (x \right ) \\ \end{align*}

[_Riccati]

11.171

\(90\)

3683

\begin{align*} y \,{\mathrm e}^{y x}+\left (2 y-x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

3.791

\(91\)

3823

\begin{align*} x_{1}^{\prime }&=-\tan \left (t \right ) x_{1}+3 \cos \left (t \right )^{2} \\ x_{2}^{\prime }&=x_{1}+\tan \left (t \right ) x_{2}+2 \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 4 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.070

\(92\)

3831

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{t} \\ x_{2}^{\prime }&=x_{2} \\ \end{align*}

system_of_ODEs

0.046

\(93\)

3832

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{t}+t x_{2} \\ x_{2}^{\prime }&=-\frac {x_{1}}{t} \\ \end{align*}

system_of_ODEs

0.053

\(94\)

3890

\begin{align*} x_{1}^{\prime }&=\left (2 t -1\right ) x_{1} \\ x_{2}^{\prime }&={\mathrm e}^{-t^{2}+t} x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.059

\(95\)

3891

\begin{align*} x_{1}^{\prime }&=t \cot \left (t^{2}\right ) x_{1}+\frac {t \cos \left (t^{2}\right ) x_{3}}{2} \\ x_{2}^{\prime }&=\frac {x_{2}}{t}-x_{3}+2-t \sin \left (t \right ) \\ x_{3}^{\prime }&=\csc \left (t^{2}\right ) x_{1}+x_{2}-x_{3}+1-t \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.089

\(96\)

4008

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.083

\(97\)

4078

\begin{align*} y^{2} \left (x^{2}+1\right )+y+\left (2 y x +1\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.731

\(98\)

4252

\begin{align*} 2 y^{2}-4 x +5&=\left (4-2 y+4 y x \right ) y^{\prime } \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16.155

\(99\)

4353

\begin{align*} x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.193

\(100\)

4535

\begin{align*} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=0 \\ x^{\prime }+x-y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.052

\(101\)

4536

\begin{align*} x^{\prime \prime }-3 x-4 y&=0 \\ x+y^{\prime \prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.038

\(102\)

4549

\begin{align*} x^{\prime }+4 x+2 y&=\frac {2}{{\mathrm e}^{t}-1} \\ 6 x-y^{\prime }+3 y&=\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

system_of_ODEs

0.043

\(103\)

4555

\begin{align*} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=40 \,{\mathrm e}^{3 t} \\ x^{\prime }+x-y^{\prime }&=36 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.031

\(104\)

4557

\begin{align*} x^{\prime \prime }+2 x-2 y^{\prime }&=0 \\ 3 x^{\prime }+y^{\prime \prime }-8 y&=240 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.037

\(105\)

4572

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+4 x_{2}+\frac {{\mathrm e}^{3 t}}{1+{\mathrm e}^{2 t}} \\ \end{align*}

system_of_ODEs

0.051

\(106\)

4573

\begin{align*} x_{1}^{\prime }&=-4 x_{1}-2 x_{2}+\frac {2}{{\mathrm e}^{t}-1} \\ x_{2}^{\prime }&=6 x_{1}+3 x_{2}-\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

system_of_ODEs

0.046

\(107\)

4673

\begin{align*} y^{\prime }&=f \left (x \right )+a y+b y^{2} \\ \end{align*}

[_Riccati]

3.547

\(108\)

4675

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+a y^{2} \\ \end{align*}

[_Riccati]

4.707

\(109\)

4688

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \\ \end{align*}

[_Riccati]

9.277

\(110\)

4690

\begin{align*} y^{\prime }+\left (a x +y\right ) y^{2}&=0 \\ \end{align*}

[_Abel]

6.646

\(111\)

4691

\begin{align*} y^{\prime }&=\left (a \,{\mathrm e}^{x}+y\right ) y^{2} \\ \end{align*}

[_Abel]

5.415

\(112\)

4692

\begin{align*} y^{\prime }+3 a \left (2 x +y\right ) y^{2}&=0 \\ \end{align*}

[_Abel]

6.795

\(113\)

4705

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \\ \end{align*}

[_Chini]

3.398

\(114\)

4718

\begin{align*} y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

7.278

\(115\)

4726

\begin{align*} y^{\prime }&=\tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

8.586

\(116\)

4731

\begin{align*} y^{\prime }&=\left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

6.426

\(117\)

4738

\begin{align*} y^{\prime }&=x^{m -1} y^{1-n} f \left (a \,x^{m}+b y^{n}\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.485

\(118\)

4744

\begin{align*} 2 y^{\prime }&=2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

135.833

\(119\)

4809

\begin{align*} y^{\prime } x&=y-x \left (x -y\right ) \sqrt {x^{2}+y^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.926

\(120\)

4820

\begin{align*} y^{\prime } x&=\sin \left (x -y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

5.086

\(121\)

4832

\begin{align*} y^{\prime } x +n y&=f \left (x \right ) g \left (x^{n} y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.483

\(122\)

4887

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}-a y^{3} \\ \end{align*}

[_rational, _Abel]

5.247

\(123\)

4888

\begin{align*} x^{2} y^{\prime }+a y^{2}+b \,x^{2} y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

6.464

\(124\)

4891

\begin{align*} x^{2} y^{\prime }&=\sec \left (y\right )+3 x \tan \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

18.727

\(125\)

4919

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=n \left (1-2 y x +y^{2}\right ) \\ \end{align*}

[_rational, _Riccati]

1.845

\(126\)

4922

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2}-2 x y \left (1+y^{2}\right ) \\ \end{align*}

[_rational, _Abel]

132.893

\(127\)

4923

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )&=x \left (x^{2}+1\right ) \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

10.467

\(128\)

4966

\begin{align*} \left (b x +a \right )^{2} y^{\prime }+c y^{2}+\left (b x +a \right ) y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

19.181

\(129\)

5003

\begin{align*} x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

58.840

\(130\)

5009

\begin{align*} x^{k} y^{\prime }&=a \,x^{m}+b y^{n} \\ \end{align*}

[_Chini]

5.048

\(131\)

5037

\begin{align*} y y^{\prime }+x^{3}+y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.607

\(132\)

5040

\begin{align*} y y^{\prime }+f \left (x \right )&=g \left (x \right ) y \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

6.835

\(133\)

5049

\begin{align*} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right )&=0 \\ \end{align*}

[NONE]

5.749

\(134\)

5109

\begin{align*} \left (x +4 x^{3}+5 y\right ) y^{\prime }+7 x^{3}+3 x^{2} y+4 y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

25.538

\(135\)

5142

\begin{align*} x \left (a +y\right ) y^{\prime }+b x +c y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13.319

\(136\)

5149

\begin{align*} \left (a +x \left (x +y\right )\right ) y^{\prime }&=b \left (x +y\right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

24.105

\(137\)

5181

\begin{align*} \left (1-x^{2} y\right ) y^{\prime }-1+x y^{2}&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

117.400

\(138\)

5205

\begin{align*} x^{7} y y^{\prime }&=2 x^{2}+2+5 x^{3} y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

61.361

\(139\)

5224

\begin{align*} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2}&=0 \\ \end{align*}

[_rational]

4.733

\(140\)

5238

\begin{align*} \left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime }&=y^{3} \csc \left (x \right ) \sec \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

101.859

\(141\)

5295

\begin{align*} \left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right )&=0 \\ \end{align*}

[_rational]

4.197

\(142\)

5300

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\ \end{align*}

[_rational]

4.319

\(143\)

5332

\begin{align*} f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{m +1}+h \left (x \right ) y^{n}&=0 \\ \end{align*}

[_Bernoulli]

6.849

\(144\)

5376

\begin{align*} {y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

16.783

\(145\)

5513

\begin{align*} x^{2} {y^{\prime }}^{2}+x \left (x^{2}+y x -2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y&=0 \\ \end{align*}

[_rational]

155.714

\(146\)

5532

\begin{align*} x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right )&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

52.367

\(147\)

5600

\begin{align*} x y^{2} {y^{\prime }}^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

[_rational]

32.490

\(148\)

5606

\begin{align*} 9 \left (-x^{2}+1\right ) y^{4} {y^{\prime }}^{2}+6 x y^{5} y^{\prime }+4 x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

30.364

\(149\)

5655

\begin{align*} x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3}&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

510.927

\(150\)

5664

\begin{align*} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

271.173

\(151\)

5665

\begin{align*} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

61.298

\(152\)

5681

\begin{align*} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right )&=a^{2} \\ \end{align*}

[_rational]

20.156

\(153\)

5744

\begin{align*} \left (x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.258

\(154\)

5745

\begin{align*} \left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.971

\(155\)

5746

\begin{align*} y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.914

\(156\)

5747

\begin{align*} \left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.218

\(157\)

5748

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.836

\(158\)

5749

\begin{align*} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.392

\(159\)

5751

\begin{align*} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.669

\(160\)

5752

\begin{align*} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

4.766

\(161\)

5754

\begin{align*} a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.384

\(162\)

5755

\begin{align*} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.394

\(163\)

5756

\begin{align*} y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.184

\(164\)

5757

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.873

\(165\)

5761

\begin{align*} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.103

\(166\)

5763

\begin{align*} \left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.905

\(167\)

5764

\begin{align*} \left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.099

\(168\)

5765

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.342

\(169\)

5812

\begin{align*} \left (c \,x^{2}+b \right ) y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.408

\(170\)

5819

\begin{align*} n y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

2.864

\(171\)

5820

\begin{align*} -a y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

2.861

\(172\)

5824

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.909

\(173\)

5830

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.383

\(174\)

5831

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.584

\(175\)

5832

\begin{align*} \left (\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.018

\(176\)

5833

\begin{align*} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.248

\(177\)

5842

\begin{align*} b \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.431

\(178\)

5844

\begin{align*} k \left (1+k \right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.184

\(179\)

5846

\begin{align*} \left (p \left (1+p \right )-k^{2} \csc \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.484

\(180\)

5847

\begin{align*} \left (\operatorname {a0} -\operatorname {a2} \csc \left (x \right )^{2}+4 \operatorname {a1} \sin \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.283

\(181\)

5850

\begin{align*} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.985

\(182\)

5851

\begin{align*} \left (a \cot \left (x \right )^{2}+b \cot \left (x \right ) \csc \left (x \right )+c \csc \left (x \right )^{2}\right ) y+k \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.569

\(183\)

5854

\begin{align*} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.429

\(184\)

5858

\begin{align*} \csc \left (x \right )^{2} \left (2+\sin \left (x \right )^{2}\right ) y-\csc \left (2 x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

99.931

\(185\)

5866

\begin{align*} -a \left (1+a \right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.446

\(186\)

5869

\begin{align*} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=\left (x +1\right ) \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

118.095

\(187\)

5874

\begin{align*} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.812

\(188\)

5876

\begin{align*} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.167

\(189\)

5877

\begin{align*} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.217

\(190\)

5879

\begin{align*} b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.753

\(191\)

5881

\begin{align*} a k \,x^{-1+k} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.378

\(192\)

5883

\begin{align*} 4 y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.714

\(193\)

5884

\begin{align*} \left (-x^{2}+4 a +2\right ) y+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.740

\(194\)

5887

\begin{align*} \left (a +x \right ) y+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.627

\(195\)

5894

\begin{align*} \left ({\mathrm e}^{x^{2}}-k^{2}\right ) x^{3} y-y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.351

\(196\)

5901

\begin{align*} y+\left (1+a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.992

\(197\)

5902

\begin{align*} y+\left (1-a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.813

\(198\)

5903

\begin{align*} -y+\left (1+a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.145

\(199\)

5907

\begin{align*} \left (\operatorname {b2} x +\operatorname {b1} \right ) y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.340

\(200\)

5908

\begin{align*} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.359

\(201\)

5911

\begin{align*} n y+\left (1-x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

8.323

\(202\)

5912

\begin{align*} n y+\left (1+k -x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

9.058

\(203\)

5917

\begin{align*} b y+\left (a +x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.816

\(204\)

5918

\begin{align*} -a y+\left (c -x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

8.888

\(205\)

5922

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.149

\(206\)

5923

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

81.653

\(207\)

5924

\begin{align*} \left (b x +2 a \right ) y-2 \left (b x +a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

94.688

\(208\)

5925

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.454

\(209\)

5938

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a +x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.815

\(210\)

5942

\begin{align*} \left (b x +a \right ) y+y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.530

\(211\)

5948

\begin{align*} y+4 \coth \left (x \right ) y^{\prime }+4 y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

29.912

\(212\)

5949

\begin{align*} \left (b x +a \right ) y+8 y^{\prime }+16 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.698

\(213\)

5951

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.807

\(214\)

5965

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.549

\(215\)

5967

\begin{align*} x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.933

\(216\)

5985

\begin{align*} -\left (c \,x^{2}+b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

61.946

\(217\)

5986

\begin{align*} -\left (-x^{4}+4 a \,x^{2}+n^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

63.099

\(218\)

5987

\begin{align*} -\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

62.285

\(219\)

5988

\begin{align*} \left (m +1\right ) x^{m} a \left (m \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.973

\(220\)

6000

\begin{align*} a y-2 \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.559

\(221\)

6021

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.922

\(222\)

6023

\begin{align*} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.082

\(223\)

6025

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.829

\(224\)

6031

\begin{align*} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.121

\(225\)

6037

\begin{align*} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.411

\(226\)

6041

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.500

\(227\)

6045

\begin{align*} \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+\operatorname {c1} \,x^{2 k}\right ) y+x \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.720

\(228\)

6046

\begin{align*} a y+2 x^{2} \cot \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.068

\(229\)

6047

\begin{align*} -\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

68.470

\(230\)

6048

\begin{align*} a y-2 x^{2} \tan \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.066

\(231\)

6049

\begin{align*} -\left (a +x \tan \left (x \right )\right ) y+x \left (1-2 x \tan \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.158

\(232\)

6050

\begin{align*} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.428

\(233\)

6065

\begin{align*} \left (b \,x^{2}+a \right ) y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.198

\(234\)

6071

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

85.518

\(235\)

6072

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=\frac {2 \left (-1-n \right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

82.848

\(236\)

6073

\begin{align*} -p \left (1+p \right ) y+2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.251

\(237\)

6074

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

82.457

\(238\)

6081

\begin{align*} n \left (1+a +b +n \right ) y+\left (-a +b -\left (2+a +b \right ) x \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

231.201

\(239\)

6082

\begin{align*} p \left (2 k +p \right ) y-\left (1+2 k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

42.997

\(240\)

6083

\begin{align*} p \left (1+2 k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

50.031

\(241\)

6084

\begin{align*} -\left (k -p \right ) \left (1+k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

38.626

\(242\)

6087

\begin{align*} b y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

117.868

\(243\)

6088

\begin{align*} \left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.193

\(244\)

6089

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

265.128

\(245\)

6090

\begin{align*} \left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

65.684

\(246\)

6092

\begin{align*} y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

40.675

\(247\)

6105

\begin{align*} p \left (1+p \right ) y+\left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

87.218

\(248\)

6106

\begin{align*} 2 y+\left (1-x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

50.379

\(249\)

6112

\begin{align*} \left (-k +p \right ) \left (1+k +p \right ) y+\left (1+k \right ) \left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

140.238

\(250\)

6113

\begin{align*} n \left (a +n \right ) y+\left (c -\left (1+a \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

155.986

\(251\)

6114

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.810

\(252\)

6115

\begin{align*} -a b y+\left (c -\left (a +b +1\right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

198.063

\(253\)

6118

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

165.549

\(254\)

6131

\begin{align*} \operatorname {a2} y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x \left (\operatorname {a0} +x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

112.040

\(255\)

6132

\begin{align*} 6 y-4 \left (a +x \right ) y^{\prime }+\left (\operatorname {a0} +x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

101.333

\(256\)

6139

\begin{align*} 2 a^{2} y-y^{\prime } x +2 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

74.990

\(257\)

6145

\begin{align*} a y-\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

68.302

\(258\)

6146

\begin{align*} \left (b x +a \right ) y+\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

95.447

\(259\)

6147

\begin{align*} 2 a \left (1+a \right ) y-\left (1+3 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

109.748

\(260\)

6154

\begin{align*} \left (4 k x -4 p^{2}-x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.818

\(261\)

6166

\begin{align*} -y-8 y^{\prime } x +4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.243

\(262\)

6167

\begin{align*} -\left (4 p^{2}+1\right ) y-8 y^{\prime } x +4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

57.059

\(263\)

6170

\begin{align*} y+2 \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

47.480

\(264\)

6171

\begin{align*} \left (b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

113.355

\(265\)

6172

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

133.726

\(266\)

6173

\begin{align*} -\left (k -p \right ) \left (1+k +p \right ) y+2 \left (1-\left (3-2 k \right ) x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

144.792

\(267\)

6174

\begin{align*} \left (k^{2} x +b \right ) y+2 \left (a x +1\right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

106.692

\(268\)

6181

\begin{align*} c y+b x y^{\prime }+\left (a \,x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

576.561

\(269\)

6185

\begin{align*} 2 \operatorname {a2} y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

266.234

\(270\)

6190

\begin{align*} -y+2 y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.069

\(271\)

6191

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.591

\(272\)

6192

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.401

\(273\)

6196

\begin{align*} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

107.535

\(274\)

6197

\begin{align*} \operatorname {a2} y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

118.694

\(275\)

6198

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

126.292

\(276\)

6207

\begin{align*} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

263.421

\(277\)

6209

\begin{align*} 2 \left (1-b \right ) x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

239.398

\(278\)

6210

\begin{align*} c x y+\left (a -\left (1+a \right ) x^{2}\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

241.526

\(279\)

6211

\begin{align*} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

237.436

\(280\)

6214

\begin{align*} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x \left (x^{2}+\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

327.110

\(281\)

6221

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

326.727

\(282\)

6222

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} \left (\operatorname {a0} +x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

342.633

\(283\)

6224

\begin{align*} y+x \left (x +1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.057

\(284\)

6226

\begin{align*} \operatorname {a0} \operatorname {a1} \left (-k +x \right ) y+\left (1-\operatorname {a0} +\operatorname {a1} +\operatorname {a0} \operatorname {a2} -\operatorname {a3} +\left (\operatorname {a2} +\operatorname {a3} \right ) x +\left (1+\operatorname {a0} +\operatorname {a1} \right ) x^{2}\right ) y^{\prime }+\left (1-x \right ) \left (a -x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

999.526

\(285\)

6227

\begin{align*} \left (\operatorname {c1} x +\operatorname {c0} \right ) y+\left (\operatorname {b2} \,x^{2}+\operatorname {b1} x +\operatorname {b0} \right ) y^{\prime }+\left (\operatorname {a1} -x \right ) \left (\operatorname {a2} -x \right ) \left (\operatorname {a3} -x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

940.015

\(286\)

6234

\begin{align*} \left (b x +a \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

127.792

\(287\)

6235

\begin{align*} \left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

595.435

\(288\)

6239

\begin{align*} \left (-a^{2}+{\mathrm e}^{\frac {2}{x}}\right ) y+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.878

\(289\)

6244

\begin{align*} \left (c \,x^{4}+b \,x^{2}+a \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.930

\(290\)

6245

\begin{align*} y+x \left (x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.022

\(291\)

6253

\begin{align*} a \left (1+a \right ) y-2 x^{3} y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

110.498

\(292\)

6256

\begin{align*} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

56.697

\(293\)

6257

\begin{align*} -\left (m^{2}-n \left (n +1\right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

97.229

\(294\)

6258

\begin{align*} -\left (k^{2}-p \left (1+p \right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.907

\(295\)

6259

\begin{align*} -\left (a^{2}-k \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

61.885

\(296\)

6260

\begin{align*} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

98.388

\(297\)

6261

\begin{align*} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

82.178

\(298\)

6262

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

175.966

\(299\)

6263

\begin{align*} b^{2} y+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

286.894

\(300\)

6264

\begin{align*} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

160.933

\(301\)

6265

\begin{align*} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (a^{2}-x^{2}\right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

212.798

\(302\)

6266

\begin{align*} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} \left (b^{2}+x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

687.018

\(303\)

6267

\begin{align*} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

752.084

\(304\)

6269

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+\left (1-x \right )^{2} x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.408

\(305\)

6271

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (1-x \right ) x \left (\operatorname {b2} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

502.448

\(306\)

6278

\begin{align*} -\left (4 k^{2}+\left (4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

70.028

\(307\)

6279

\begin{align*} -\left (4 k^{2}+\left (-4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

69.178

\(308\)

6280

\begin{align*} -\left (a \left (1+a \right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

416.097

\(309\)

6288

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (a -x \right ) \left (b -x \right ) \left (c -x \right ) \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a -x \right )^{2} \left (b -x \right )^{2} \left (c -x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2577.478

\(310\)

6294

\begin{align*} \left (\operatorname {a2} +\operatorname {b2} \,x^{k}\right ) y+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) y^{\prime }+x^{2} \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.495

\(311\)

6295

\begin{align*} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.300

\(312\)

6296

\begin{align*} -\left (4 k^{2}-\left (-p^{2}+1\right ) \sinh \left (x \right )^{2}\right ) y+4 \cosh \left (x \right ) \sinh \left (x \right ) y^{\prime }+4 \sinh \left (x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.721

\(313\)

6300

\begin{align*} y^{\prime \prime }&=x +6 y^{2} \\ \end{align*}

[[_Painleve, ‘1st‘]]

0.215

\(314\)

6301

\begin{align*} y^{\prime \prime }&=a +b x +c y^{2} \\ \end{align*}

[NONE]

0.245

\(315\)

6304

\begin{align*} y^{\prime \prime }&=a +y x +2 y^{3} \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.246

\(316\)

6305

\begin{align*} y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\ \end{align*}

[NONE]

0.306

\(317\)

6306

\begin{align*} y^{\prime \prime }&=a -2 a b x y+2 b^{2} y^{3} \\ \end{align*}

[NONE]

0.265

\(318\)

6307

\begin{align*} y^{\prime \prime }&=\operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \\ \end{align*}

[NONE]

0.286

\(319\)

6309

\begin{align*} a \,x^{r} y^{s}+y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.241

\(320\)

6313

\begin{align*} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime }&=2 y^{3} \\ \end{align*}

[NONE]

0.481

\(321\)

6316

\begin{align*} a y+y y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

21.928

\(322\)

6317

\begin{align*} y y^{\prime }+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\ \end{align*}

[NONE]

0.434

\(323\)

6318

\begin{align*} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

13.765

\(324\)

6319

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.528

\(325\)

6320

\begin{align*} y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.589

\(326\)

6321

\begin{align*} y^{\prime \prime }&=\operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.740

\(327\)

6322

\begin{align*} y^{\prime \prime }&=y f^{\prime }\left (x \right )+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2.501

\(328\)

6323

\begin{align*} y^{\prime \prime }&=g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.449

\(329\)

6324

\begin{align*} y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.507

\(330\)

6325

\begin{align*} y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.570

\(331\)

6326

\begin{align*} y^{\prime \prime }&=a +4 b^{2} y+3 b y^{2}+3 y y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14.549

\(332\)

6327

\begin{align*} 3 y y^{\prime }+y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y-y^{3} \\ \end{align*}

[NONE]

0.499

\(333\)

6328

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.435

\(334\)

6329

\begin{align*} y^{\prime \prime }&=a \left (1+2 y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

191.188

\(335\)

6330

\begin{align*} b y+a \left (-1+y^{2}\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.745

\(336\)

6331

\begin{align*} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.279

\(337\)

6338

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.030

\(338\)

6345

\begin{align*} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.987

\(339\)

6354

\begin{align*} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{k} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.556

\(340\)

6355

\begin{align*} g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

186.424

\(341\)

6356

\begin{align*} y^{\prime \prime }&=A \,x^{a} y^{b} {y^{\prime }}^{c} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

\(342\)

6358

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.653

\(343\)

6363

\begin{align*} y^{\prime \prime }&=a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.566

\(344\)

6366

\begin{align*} y^{\prime \prime }&=f \left (a x +b y, y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

\(345\)

6367

\begin{align*} y^{\prime \prime }&=f \left (x , \frac {y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.285

\(346\)

6368

\begin{align*} y^{\prime \prime }&=x^{-2+n} f \left (y x^{-n}, x^{1-n} y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.499

\(347\)

6372

\begin{align*} a \,{\mathrm e}^{y} x +y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]]

0.358

\(348\)

6373

\begin{align*} x y^{5}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.284

\(349\)

6374

\begin{align*} x y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.303

\(350\)

6375

\begin{align*} x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.352

\(351\)

6376

\begin{align*} a \,x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.328

\(352\)

6377

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.341

\(353\)

6383

\begin{align*} y^{\prime \prime } x&=-y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.398

\(354\)

6385

\begin{align*} \left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\ \end{align*}

[NONE]

0.458

\(355\)

6389

\begin{align*} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.414

\(356\)

6390

\begin{align*} a \,{\mathrm e}^{-1+y}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.437

\(357\)

6391

\begin{align*} \left (1+a \right ) x y^{\prime }+x^{2} y^{\prime \prime }&=x^{k} f \left (x^{k} y, k y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.951

\(358\)

6395

\begin{align*} x^{2} y^{\prime \prime }&=6 y-4 y^{2} x^{2}+x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.667

\(359\)

6396

\begin{align*} a \left (-y+y^{\prime } x \right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.553

\(360\)

6397

\begin{align*} 2 y x +a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=b \\ \end{align*}

[NONE]

0.543

\(361\)

6398

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.363

\(362\)

6399

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.865

\(363\)

6400

\begin{align*} x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

54.551

\(364\)

6402

\begin{align*} 2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

\(365\)

6404

\begin{align*} 24+12 y x +x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.788

\(366\)

6405

\begin{align*} x^{3} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.599

\(367\)

6406

\begin{align*} -6+x y \left (12+3 y x -2 y^{2} x^{2}\right )+x^{2} \left (9+2 y x \right ) y^{\prime }+2 x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.939

\(368\)

6407

\begin{align*} x^{4} y^{\prime \prime }&=-4 y^{2}+x \left (x^{2}+2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.622

\(369\)

6408

\begin{align*} x^{4} y^{\prime \prime }&=-4 y^{2}+x^{2} y^{\prime } \left (x +y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.742

\(370\)

6409

\begin{align*} \left (-y+y^{\prime } x \right )^{3}+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.099

\(371\)

6410

\begin{align*} y^{b}+x^{a} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.305

\(372\)

6411

\begin{align*} 24-48 y x +\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[NONE]

1.375

\(373\)

6412

\begin{align*} b +a x y-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[NONE]

2.508

\(374\)

6413

\begin{align*} \sqrt {x}\, y^{\prime \prime }&=y^{{3}/{2}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.311

\(375\)

6414

\begin{align*} x^{{3}/{2}} y^{\prime \prime }&=f \left (\frac {y}{\sqrt {x}}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.858

\(376\)

6416

\begin{align*} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime }&=g \left (y, f \left (x \right ) y^{\prime }\right ) \\ \end{align*}

[NONE]

0.467

\(377\)

6417

\begin{align*} f \left (x \right )^{2} y^{\prime \prime }&=-24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \\ \end{align*}

[NONE]

0.523

\(378\)

6419

\begin{align*} 2 f \left (x \right )^{2} y^{\prime \prime }&=2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right ) \\ \end{align*}

[NONE]

0.727

\(379\)

6430

\begin{align*} y y^{\prime \prime }&={\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.543

\(380\)

6432

\begin{align*} y y^{\prime \prime }&=-y^{2} x^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

0.388

\(381\)

6435

\begin{align*} y y^{\prime \prime }&=y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.579

\(382\)

6437

\begin{align*} y-y^{\prime } x +{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

\(383\)

6438

\begin{align*} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

\(384\)

6439

\begin{align*} y y^{\prime \prime }&=y^{3}-y f^{\prime }\left (x \right )+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.562

\(385\)

6440

\begin{align*} y y^{\prime \prime }&=-f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \\ \end{align*}

[NONE]

0.687

\(386\)

6442

\begin{align*} y y^{\prime \prime }&=b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

9.672

\(387\)

6444

\begin{align*} y y^{\prime \prime }&=g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.571

\(388\)

6445

\begin{align*} y y^{\prime \prime }&=-y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.719

\(389\)

6454

\begin{align*} y y^{\prime \prime }&=\operatorname {a2} y^{2}+\operatorname {a3} y^{1+a}+\operatorname {a1} y y^{\prime }+a {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

199.444

\(390\)

6455

\begin{align*} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

\(391\)

6464

\begin{align*} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.394

\(392\)

6465

\begin{align*} \left (x -y\right ) y^{\prime \prime }&=\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.424

\(393\)

6466

\begin{align*} \left (x -y\right ) y^{\prime \prime }&=f \left (y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.485

\(394\)

6472

\begin{align*} 2 y y^{\prime \prime }&=4 y^{2} \left (x +2 y\right )+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.315

\(395\)

6474

\begin{align*} 2 y y^{\prime \prime }&=-1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.330

\(396\)

6475

\begin{align*} 2 y y^{\prime \prime }&=y^{2} \left (a x +b y\right )+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.309

\(397\)

6477

\begin{align*} 2 y y^{\prime \prime }&=-a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2} \\ \end{align*}

[[_Painleve, ‘4th‘]]

0.438

\(398\)

6478

\begin{align*} 2 y y^{\prime \prime }&=8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.585

\(399\)

6479

\begin{align*} 2 y y^{\prime \prime }&=-1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.511

\(400\)

6482

\begin{align*} 2 y y^{\prime \prime }&=f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.306

\(401\)

6494

\begin{align*} a \left (2+a \right )^{2} y y^{\prime \prime }&=-a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (-1+a \right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.916

\(402\)

6498

\begin{align*} x y y^{\prime \prime }&=y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_Painleve, ‘3rd‘]]

0.496

\(403\)

6501

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.599

\(404\)

6502

\begin{align*} x y y^{\prime \prime }&=x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.390

\(405\)

6503

\begin{align*} x y y^{\prime \prime }&=b^{2} x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.399

\(406\)

6507

\begin{align*} x y y^{\prime \prime }&=-\left (1+y\right ) y^{\prime }+2 x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.383

\(407\)

6515

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.488

\(408\)

6517

\begin{align*} x^{2} y y^{\prime \prime }&=a y^{2}+a x y y^{\prime }+2 x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.526

\(409\)

6518

\begin{align*} c y^{2}+b x y y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.537

\(410\)

6519

\begin{align*} 2 \left (1-y\right )^{2} y-2 x \left (1-y\right ) y^{\prime }+2 x^{2} {y^{\prime }}^{2}+x^{2} \left (1-y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.006

\(411\)

6520

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=\left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.795

\(412\)

6521

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} \left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.693

\(413\)

6522

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.764

\(414\)

6523

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.424

\(415\)

6524

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-4 y^{2}+2 y y^{\prime } x +x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.499

\(416\)

6526

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }&=a \left (2+x \right ) y^{2}-2 \left (x^{2}+1\right ) y y^{\prime }+x \left (x +1\right )^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.786

\(417\)

6527

\begin{align*} 3 x y^{2}-12 x^{2} y y^{\prime }+4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}+8 \left (-x^{3}+1\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.810

\(418\)

6529

\begin{align*} \sqrt {a^{2}-x^{2}}\, \left (-y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime }\right )&=b x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.898

\(419\)

6530

\begin{align*} \operatorname {f3} \left (x \right ) y^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f0} \left (x \right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.764

\(420\)

6531

\begin{align*} 4 f \left (x \right ) y y^{\prime \prime }&=4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.759

\(421\)

6533

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

\(422\)

6534

\begin{align*} y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=b x +a \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

\(423\)

6540

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }&=2 \left (x -y^{2}\right ) {y^{\prime }}^{3}-y^{\prime } \left (1+4 y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.569

\(424\)

6541

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }&=\left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.571

\(425\)

6542

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }&=2 \left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.541

\(426\)

6544

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (1-y\right ) y y^{\prime }+\left (1-2 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.593

\(427\)

6546

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.651

\(428\)

6547

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=-\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

1.408

\(429\)

6550

\begin{align*} x y^{2} y^{\prime \prime }&=a \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.268

\(430\)

6551

\begin{align*} x y^{2} y^{\prime \prime }&=\left (a -y^{2}\right ) y^{\prime }+x y {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.418

\(431\)

6552

\begin{align*} x^{2} y^{2} y^{\prime \prime }&=\left (x^{2}+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.677

\(432\)

6553

\begin{align*} \left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}+\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }&=x \left (a^{2}-y^{2}\right ) y^{\prime } \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.258

\(433\)

6554

\begin{align*} \operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

1.989

\(434\)

6555

\begin{align*} \left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.517

\(435\)

6561

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

1.661

\(436\)

6562

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (\left (1-y\right ) \left (x -y\right ) y\right )^{{3}/{2}}-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

unknown

2.148

\(437\)

6563

\begin{align*} 2 \left (1-x \right )^{2} x^{2} \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=\operatorname {a0} x \left (1-y\right )^{2} \left (x -y\right )^{2}+\left (-1+\operatorname {a2} \right ) \left (1-x \right ) x \left (1-y\right )^{2} y^{2}+\operatorname {a1} \left (1-x \right ) \left (x -y\right )^{2} y^{2}+\operatorname {a3} \left (1-y\right )^{2} \left (x -y\right )^{2} y^{2}+2 \left (1-x \right ) x \left (1-y\right )^{2} y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

4.200

\(438\)

6565

\begin{align*} a^{2} y+\left (x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.536

\(439\)

6566

\begin{align*} A y+\left (a +2 b x +c \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.771

\(440\)

6567

\begin{align*} \operatorname {f3} \left (y\right )+\operatorname {f2} \left (y\right ) y^{\prime }+\operatorname {f1} \left (y\right ) {y^{\prime }}^{2}+\operatorname {f0} \left (y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.014

\(441\)

6569

\begin{align*} \sqrt {y}\, y^{\prime \prime }&=2 b x +2 a \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.297

\(442\)

6570

\begin{align*} X \left (x , y\right )^{3} y^{\prime \prime }&=1 \\ \end{align*}

[NONE]

0.269

\(443\)

6573

\begin{align*} y^{\prime } y^{\prime \prime }&=x y^{2}+x^{2} y y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

6.215

\(444\)

6574

\begin{align*} a y^{2}+x^{3} y^{\prime } y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.666

\(445\)

6579

\begin{align*} \left ({y^{\prime }}^{2}+a \left (-y+y^{\prime } x \right )\right ) y^{\prime \prime }&=b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.570

\(446\)

6581

\begin{align*} h \left (x \right )+g \left (y\right ) y^{\prime }+f \left (y^{\prime }\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.253

\(447\)

6582

\begin{align*} {y^{\prime \prime }}^{2}&=a +b y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.026

\(448\)

6588

\begin{align*} 2 \left (x -y^{\prime }\right ) y^{\prime }-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}&=2 y \\ \end{align*}

[NONE]

0.054

\(449\)

6589

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.966

\(450\)

6590

\begin{align*} 6 y y^{\prime \prime }-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+\left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}&=36 x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.147

\(451\)

6591

\begin{align*} h y^{2}+\operatorname {g1} y y^{\prime }+\operatorname {g0} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }+\operatorname {f0} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.042

\(452\)

6595

\begin{align*} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}&=4 x y \left (-y+y^{\prime } x \right )^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.065

\(453\)

6599

\begin{align*} f \left (y^{\prime \prime }, y^{\prime }-y^{\prime \prime } x , y-y^{\prime } x +\frac {x^{2} y^{\prime \prime }}{2}\right )&=0 \\ \end{align*}

[NONE]

23.845

\(454\)

6608

\begin{align*} y^{\prime \prime \prime }&=y x \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.023

\(455\)

6620

\begin{align*} y+2 y^{\prime } x +y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.028

\(456\)

6621

\begin{align*} a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.029

\(457\)

6622

\begin{align*} y f^{\prime }\left (x \right )+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

\(458\)

6660

\begin{align*} -8 a x y-2 \left (-4 x^{2}-2 a +1\right ) y^{\prime }-6 y^{\prime \prime } x +y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.050

\(459\)

6661

\begin{align*} a^{3} x^{3} y+3 a^{2} x^{2} y^{\prime }+3 a x y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.044

\(460\)

6662

\begin{align*} -2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

\(461\)

6663

\begin{align*} -y^{\prime }+\left (2 \cot \left (x \right )+\csc \left (x \right )\right ) y^{\prime \prime }+y^{\prime \prime \prime }&=\cot \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

3.856

\(462\)

6665

\begin{align*} 2 y \left (2 f \left (x \right ) g \left (x \right )+g^{\prime }\left (x \right )\right )+\left (4 g \left (x \right )+f^{\prime }\left (x \right )+2 {f^{\prime }\left (x \right )}^{2}\right ) y^{\prime }+3 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.083

\(463\)

6666

\begin{align*} f \left (x \right ) y+y^{\prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.044

\(464\)

6671

\begin{align*} y x +3 y^{\prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(465\)

6672

\begin{align*} -y+y^{\prime } x -y^{\prime \prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(466\)

6673

\begin{align*} y-y^{\prime } x -y^{\prime \prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.032

\(467\)

6674

\begin{align*} y-y^{\prime } x -y^{\prime \prime }+x y^{\prime \prime \prime }&=-x^{2}+1 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

\(468\)

6675

\begin{align*} -x^{2} y+3 y^{\prime \prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.031

\(469\)

6678

\begin{align*} a \,x^{2} y-6 y^{\prime }+x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

\(470\)

6680

\begin{align*} 3 y x +\left (x^{2}+2\right ) y^{\prime }+4 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.042

\(471\)

6683

\begin{align*} a \,x^{2} y+6 y^{\prime }+6 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

\(472\)

6685

\begin{align*} 2 x^{3} y+\left (-2 x^{3}+6\right ) y^{\prime }+x \left (-x^{2}+6\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.053

\(473\)

6686

\begin{align*} 10 y^{\prime }+8 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.513

\(474\)

6687

\begin{align*} -2 y x +\left (x^{2}+2\right ) y^{\prime }-2 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.045

\(475\)

6688

\begin{align*} -2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.045

\(476\)

6691

\begin{align*} y+y^{\prime } x +\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime \prime }+x \left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

1.906

\(477\)

6706

\begin{align*} -2 \left (x^{2}+4\right ) y+x \left (x^{2}+8\right ) y^{\prime }-4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.056

\(478\)

6708

\begin{align*} -y+2 y^{\prime } x +x^{2} \ln \left (x \right ) y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=2 x^{3} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

1.198

\(479\)

6710

\begin{align*} -12 y+3 \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(480\)

6713

\begin{align*} -8 y+3 \left (x +1\right ) y^{\prime }+\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right )^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(481\)

6714

\begin{align*} -6 y+6 \left (x +1\right ) y^{\prime }-3 x \left (2+x \right ) y^{\prime \prime }+x^{2} \left (3+y\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[NONE]

0.038

\(482\)

6716

\begin{align*} 2 y+\left (1-2 x \right ) y^{\prime }+\left (1-2 x \right )^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.047

\(483\)

6720

\begin{align*} -4 \left (1+3 x \right ) y+2 x \left (2+5 x \right ) y^{\prime }-2 x^{2} \left (2 x +1\right ) y^{\prime \prime }+x^{3} \left (x +1\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.045

\(484\)

6722

\begin{align*} -4 \left (3 x^{2}+1\right ) y+2 x \left (5 x^{2}+2\right ) y^{\prime }-2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.047

\(485\)

6723

\begin{align*} \left (a -x \right )^{3} \left (b -x \right )^{3} y^{\prime \prime \prime }&=c y \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.050

\(486\)

6747

\begin{align*} 10 f^{\prime }\left (x \right ) y^{\prime }+3 y \left (3 f \left (x \right )^{2}+f^{\prime \prime }\left (x \right )\right )+10 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.052

\(487\)

6750

\begin{align*} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.028

\(488\)

6751

\begin{align*} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=x^{3} \\ \end{align*}

[NONE]

0.031

\(489\)

6759

\begin{align*} a^{4} x^{4} y+4 a^{3} x^{3} y^{\prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a x y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.051

\(490\)

6769

\begin{align*} -a^{2} y+12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.048

\(491\)

6771

\begin{align*} -c^{4} y+16 \left (1+a -b \right ) \left (2+a -b \right ) y^{\prime \prime }+32 \left (2+a -b \right ) x y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.056

\(492\)

6772

\begin{align*} -a^{4} x^{3} y-y^{\prime \prime } x +2 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.091

\(493\)

6774

\begin{align*} -k y-\left (-a b c +x \right ) y^{\prime }+\left (a b +a c +b c +a +b +c +1\right ) x y^{\prime \prime }+\left (3+a +b +c \right ) x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.066

\(494\)

6780

\begin{align*} -b^{4} x^{\frac {2}{a}} y+16 \left (-2 a +1\right ) \left (1-a \right ) a^{2} x^{2} y^{\prime \prime }-32 \left (-2 a +1\right ) a^{2} x^{3} y^{\prime \prime \prime }+16 a^{4} x^{4} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.082

\(495\)

6791

\begin{align*} -y y^{\prime }+{y^{\prime }}^{2}+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.033

\(496\)

6792

\begin{align*} a y y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.032

\(497\)

6793

\begin{align*} y^{2}-\left (1-2 y x \right ) y^{\prime }+y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_3rd_order, _exact, _nonlinear]]

0.048

\(498\)

6794

\begin{align*} \left (1-y\right ) y^{\prime }+x {y^{\prime }}^{2}-x \left (1-y\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.039

\(499\)

6795

\begin{align*} y^{3} y^{\prime }-y^{\prime } y^{\prime \prime }+y y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.032

\(500\)

6796

\begin{align*} 3 y^{\prime } y^{\prime \prime }+\left (a +y\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.040

\(501\)

6797

\begin{align*} 3 y^{2}+18 y y^{\prime } x +9 x^{2} {y^{\prime }}^{2}+9 x^{2} y y^{\prime \prime }+3 x^{3} y^{\prime } y^{\prime \prime }+x^{3} y y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.051

\(502\)

6798

\begin{align*} 2 {y^{\prime }}^{3}+3 y^{\prime \prime }+6 y y^{\prime } y^{\prime \prime }+\left (x +y^{2}\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.050

\(503\)

6799

\begin{align*} 15 {y^{\prime }}^{3}-18 y y^{\prime } y^{\prime \prime }+4 y^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.052

\(504\)

6800

\begin{align*} 40 {y^{\prime }}^{3}-45 y y^{\prime } y^{\prime \prime }+9 y^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.039

\(505\)

6802

\begin{align*} y^{\prime } y^{\prime \prime }&=a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

135.398

\(506\)

6813

\begin{align*} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.093

\(507\)

7008

\begin{align*} \left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime }&=y-x^{2} \sqrt {x^{2}-y^{2}} \\ \end{align*}

[NONE]

88.807

\(508\)

7142

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.374

\(509\)

7146

\begin{align*} y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\ \end{align*}

[_Abel]

11.135

\(510\)

7147

\begin{align*} x^{2} y^{\prime }+x y^{3}+a y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

5.893

\(511\)

7148

\begin{align*} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

14.794

\(512\)

7169

\begin{align*} x^{4} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.092

\(513\)

7182

\begin{align*} x^{3} y^{\prime \prime }-\left (2 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.077

\(514\)

7186

\begin{align*} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.185

\(515\)

7190

\begin{align*} x^{3} y^{\prime \prime }+y&=x^{{3}/{2}} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.086

\(516\)

7191

\begin{align*} 2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x}&=\sqrt {x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.122

\(517\)

7382

\begin{align*} s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.889

\(518\)

7385

\begin{align*} s^{2}+s^{\prime }&=\frac {s+1}{s t} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9.163

\(519\)

7419

\begin{align*} x^{\prime }+t x&={\mathrm e}^{x} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.986

\(520\)

7422

\begin{align*} x x^{\prime }+t^{2} x&=\sin \left (t \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

173.666

\(521\)

7440

\begin{align*} y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}}&=x \\ y \left (0\right ) &= 2 \\ \end{align*}

[_linear]

16.029

\(522\)

7472

\begin{align*} 5 x^{2} y+6 x^{3} y^{2}+4 x y^{2}+\left (2 x^{3}+3 x^{4} y+3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

25.911

\(523\)

7488

\begin{align*} 2 x +2 y+2 x^{3} y+4 y^{2} x^{2}+\left (2 x +x^{4}+2 x^{3} y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.051

\(524\)

7533

\begin{align*} 1+\frac {1}{1+x^{2}+4 y x +y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 y x +y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

83.207

\(525\)

7547

\begin{align*} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[NONE]

145.401

\(526\)

7607

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.248

\(527\)

7623

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.317

\(528\)

7694

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+m y&=0 \\ \end{align*}

[_Laguerre]

5.856

\(529\)

7836

\begin{align*} x^{3} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.153

\(530\)

7938

\begin{align*} 4 x^{2} y y^{\prime }&=3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \\ \end{align*}

[_rational]

18.145

\(531\)

8054

\begin{align*} \left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 y^{\prime } x -4 y&=8 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.032

\(532\)

8058

\begin{align*} \left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right )&=x \\ \end{align*}

[[_3rd_order, _exact, _nonlinear]]

0.038

\(533\)

8059

\begin{align*} 3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right )&=-\frac {2}{x} \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.059

\(534\)

8060

\begin{align*} y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.041

\(535\)

8091

\begin{align*} x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.035

\(536\)

8092

\begin{align*} x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.027

\(537\)

8118

\begin{align*} x^{3} y^{\prime \prime }+y&=\frac {1}{x^{4}} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.069

\(538\)

8119

\begin{align*} y^{\prime \prime } x -2 y^{\prime }+y&=\cos \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

2.414

\(539\)

8120

\begin{align*} y^{\prime }-\frac {y}{x}&=\cos \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.198

\(540\)

8139

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.109

\(541\)

8144

\begin{align*} x^{3} y^{\prime \prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.068

\(542\)

8151

\begin{align*} \left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.128

\(543\)

8152

\begin{align*} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\ \end{align*}

[NONE]

0.038

\(544\)

8153

\begin{align*} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.031

\(545\)

8154

\begin{align*} u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\ \end{align*}

[NONE]

1.084

\(546\)

8157

\begin{align*} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

17.866

\(547\)

8159

\begin{align*} \sin \left (x^{\prime }\right )+y^{3} x&=\sin \left (y \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

25.527

\(548\)

8198

\begin{align*} x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\ y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.029

\(549\)

8251

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.381

\(550\)

8253

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

12.109

\(551\)

8270

\begin{align*} y^{\prime }&=6 \sqrt {y}+5 x^{3} \\ y \left (-1\right ) &= 4 \\ \end{align*}

[_Chini]

1.917

\(552\)

8291

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_Riccati]

7.405

\(553\)

8293

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (-6\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.030

\(554\)

8294

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.562

\(555\)

8295

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.569

\(556\)

8296

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (8\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.583

\(557\)

8471

\begin{align*} y^{\prime } x -4 y&=x^{6} {\mathrm e}^{x} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_linear]

2.557

\(558\)

8499

\begin{align*} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.134

\(559\)

8507

\begin{align*} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.180

\(560\)

8531

\begin{align*} x^{4} y^{\prime \prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.164

\(561\)

8532

\begin{align*} x^{3} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.098

\(562\)

8533

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.221

\(563\)

8756

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.021

\(564\)

8760

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime } x +4 x^{2} y^{\prime }+8 x^{3} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.031

\(565\)

8761

\begin{align*} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.796

\(566\)

8771

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

84.526

\(567\)

8776

\begin{align*} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y&=\left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.415

\(568\)

8803

\begin{align*} x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.467

\(569\)

8833

\begin{align*} \left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

100.278

\(570\)

8834

\begin{align*} \left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (1+k \right ) \eta &=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

116.844

\(571\)

8970

\begin{align*} y^{\prime \prime \prime }-y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(572\)

8973

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.005

\(573\)

8985

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.241

\(574\)

9047

\begin{align*} y_{1}^{\prime }&=3 y_{1}+x y_{3} \\ y_{2}^{\prime }&=y_{2}+x^{3} y_{3} \\ y_{3}^{\prime }&=2 x y_{1}-y_{2}+{\mathrm e}^{x} y_{3} \\ \end{align*}

system_of_ODEs

0.048

\(575\)

9112

\begin{align*} x \ln \left (x \right ) y^{\prime }+y&=3 x^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

0.360

\(576\)

9128

\begin{align*} 2 y^{2}-4 x +5&=\left (4-2 y+4 y x \right ) y^{\prime } \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

20.236

\(577\)

9181

\begin{align*} x y y^{\prime \prime }&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[NONE]

0.640

\(578\)

9361

\begin{align*} x^{2} y^{\prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.095

\(579\)

9384

\begin{align*} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.212

\(580\)

9386

\begin{align*} x^{2} y^{\prime \prime }+\left (-x +2\right ) y^{\prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.176

\(581\)

9392

\begin{align*} x^{4} y^{\prime \prime }+\sin \left (x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.180

\(582\)

9402

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.202

\(583\)

9403

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.395

\(584\)

9435

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.032

\(585\)

9436

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.034

\(586\)

9437

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.033

\(587\)

9438

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.032

\(588\)

9485

\begin{align*} x^{\prime }&=x y+1 \\ y^{\prime }&=-x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.039

\(589\)

9486

\begin{align*} x^{\prime }&=t y+1 \\ y^{\prime }&=-t x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.039

\(590\)

9492

\begin{align*} y^{\prime }&=y+x \,{\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

8.418

\(591\)

9524

\begin{align*} y^{\prime \prime }+5 y^{\prime } x +\sqrt {x}\, y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.668

\(592\)

9527

\begin{align*} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.214

\(593\)

9535

\begin{align*} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.245

\(594\)

9560

\begin{align*} x^{3} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.173

\(595\)

9561

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.451

\(596\)

10005

\begin{align*} y^{\prime }&=\sqrt {1-x^{2}-y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.572

\(597\)

10038

\begin{align*} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.556

\(598\)

10049

\begin{align*} y y^{\prime \prime }&=x \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.262

\(599\)

10050

\begin{align*} y^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.348

\(600\)

10052

\begin{align*} 3 y y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.379

\(601\)

10077

\begin{align*} y^{\prime \prime }-y y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

321.822

\(602\)

10089

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.827

\(603\)

10090

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.562

\(604\)

10091

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.653

\(605\)

10120

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.362

\(606\)

10121

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.443

\(607\)

10123

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-y x -x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.272

\(608\)

10124

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.506

\(609\)

10125

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.093

\(610\)

10126

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-y x -x^{2}-\frac {1}{x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.748

\(611\)

10128

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.108

\(612\)

10129

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-y x -x^{3}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.065

\(613\)

10130

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.730

\(614\)

10131

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.593

\(615\)

10132

\begin{align*} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.046

\(616\)

10154

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

109.250

\(617\)

10156

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2}&=0 \\ \end{align*}

[NONE]

0.439

\(618\)

10166

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x +1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.742

\(619\)

10167

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.761

\(620\)

10168

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2}+x +1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.820

\(621\)

10172

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.763

\(622\)

10173

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=1+\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

\(623\)

10175

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\cos \left (x \right )+\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.801

\(624\)

10183

\begin{align*} 2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.709

\(625\)

10195

\begin{align*} {y^{\prime }}^{2}+y^{2}&=\sec \left (x \right )^{4} \\ \end{align*}

[‘y=_G(x,y’)‘]

82.002

\(626\)

10227

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.512

\(627\)

10229

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.388

\(628\)

10230

\begin{align*} \frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.362

\(629\)

10242

\begin{align*} y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.355

\(630\)

10243

\begin{align*} y^{\prime }+y&=\frac {1}{x^{2}} \\ \end{align*}
Series expansion around \(x=0\).

[[_linear, ‘class A‘]]

0.373

\(631\)

10245

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.235

\(632\)

10246

\begin{align*} y^{\prime \prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _quadrature]]

0.562

\(633\)

10247

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.760

\(634\)

10248

\begin{align*} y^{\prime \prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.682

\(635\)

10249

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.753

\(636\)

10258

\begin{align*} y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.887

\(637\)

10287

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\ \end{align*}

[_Riccati]

6.500

\(638\)

10348

\begin{align*} y^{\prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.309

\(639\)

10381

\begin{align*} {y^{\prime \prime }}^{2}+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.064

\(640\)

10414

\begin{align*} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.582

\(641\)

10415

\begin{align*} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.950

\(642\)

10419

\begin{align*} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.622

\(643\)

10424

\begin{align*} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.124

\(644\)

10432

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

51.960

\(645\)

10447

\begin{align*} x^{2} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.650

\(646\)

10458

\begin{align*} y^{\prime \prime \prime }-y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.064

\(647\)

11335

\begin{align*} y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )}&=0 \\ \end{align*}

[_Riccati]

7.904

\(648\)

11338

\begin{align*} y^{\prime }+y^{3}+a x y^{2}&=0 \\ \end{align*}

[_Abel]

21.215

\(649\)

11339

\begin{align*} y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2}&=0 \\ \end{align*}

[_Abel]

8.173

\(650\)

11342

\begin{align*} y^{\prime }+3 a y^{3}+6 a x y^{2}&=0 \\ \end{align*}

[_Abel]

11.547

\(651\)

11344

\begin{align*} y^{\prime }-x \left (2+x \right ) y^{3}-\left (x +3\right ) y^{2}&=0 \\ \end{align*}

[_Abel]

9.562

\(652\)

11345

\begin{align*} y^{\prime }+\left (4 a^{2} x +3 a \,x^{2}+b \right ) y^{3}+3 x y^{2}&=0 \\ \end{align*}

[_Abel]

16.995

\(653\)

11347

\begin{align*} y^{\prime }+2 \left (a^{2} x^{3}-b^{2} x \right ) y^{3}+3 b y^{2}&=0 \\ \end{align*}

[_Abel]

11.431

\(654\)

11349

\begin{align*} y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2}&=0 \\ \end{align*}

[_Abel]

44.231

\(655\)

11350

\begin{align*} y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2}&=0 \\ \end{align*}

[_Abel]

45.793

\(656\)

11351

\begin{align*} y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right )&=0 \\ \end{align*}

[_Abel]

7.769

\(657\)

11352

\begin{align*} y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\ \end{align*}

[_Abel]

10.061

\(658\)

11356

\begin{align*} y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right )&=0 \\ \end{align*}

[_Chini]

5.382

\(659\)

11357

\begin{align*} y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b}&=0 \\ \end{align*}

[NONE]

4.674

\(660\)

11363

\begin{align*} y^{\prime }-\frac {y-x^{2} \sqrt {x^{2}-y^{2}}}{x y \sqrt {x^{2}-y^{2}}+x}&=0 \\ \end{align*}

[NONE]

40.180

\(661\)

11366

\begin{align*} y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

23.569

\(662\)

11375

\begin{align*} y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

9.234

\(663\)

11380

\begin{align*} y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

4.712

\(664\)

11381

\begin{align*} y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.650

\(665\)

11382

\begin{align*} y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

3.160

\(666\)

11383

\begin{align*} y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.135

\(667\)

11384

\begin{align*} y^{\prime }-\tan \left (y x \right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.328

\(668\)

11386

\begin{align*} y^{\prime }-x^{-1+a} y^{1-b} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.341

\(669\)

11388

\begin{align*} 2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x}&=0 \\ \end{align*}

[_Riccati]

39.089

\(670\)

11411

\begin{align*} y^{\prime } x +y^{3}+3 x y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

12.213

\(671\)

11415

\begin{align*} y^{\prime } x -x \left (-x +y\right ) \sqrt {x^{2}+y^{2}}-y&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.628

\(672\)

11420

\begin{align*} y^{\prime } x -\sin \left (x -y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

6.327

\(673\)

11427

\begin{align*} y^{\prime } x +a y-f \left (x \right ) g \left (x^{a} y\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.936

\(674\)

11444

\begin{align*} x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

7.724

\(675\)

11445

\begin{align*} x^{2} y^{\prime }+x y^{3}+a y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

15.881

\(676\)

11446

\begin{align*} x^{2} y^{\prime }+y^{3} a \,x^{2}+b y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

9.360

\(677\)

11450

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 y x -1\right )&=0 \\ \end{align*}

[_rational, _Abel]

67.729

\(678\)

11451

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.801

\(679\)

11456

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+a \left (1-2 y x +y^{2}\right )&=0 \\ \end{align*}

[_rational, _Riccati]

6.514

\(680\)

11468

\begin{align*} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

21.740

\(681\)

11484

\begin{align*} x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

30.431

\(682\)

11501

\begin{align*} y y^{\prime }+x^{3}+y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.005

\(683\)

11503

\begin{align*} y y^{\prime }+a y+\frac {\left (a^{2}-1\right ) x}{4}+b \,x^{n}&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

110.644

\(684\)

11504

\begin{align*} y y^{\prime }+a y+b \,{\mathrm e}^{x}-2 a&=0 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

19.380

\(685\)

11510

\begin{align*} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right )&=0 \\ \end{align*}

[NONE]

6.548

\(686\)

11531

\begin{align*} y y^{\prime } x -y^{2}+y x +x^{3}-2 x^{2}&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

33.756

\(687\)

11534

\begin{align*} x \left (a +y\right ) y^{\prime }+b y+c x&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

23.341

\(688\)

11548

\begin{align*} \left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

67.051

\(689\)

11549

\begin{align*} \left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

76.274

\(690\)

11553

\begin{align*} x \left (y x +x^{4}-1\right ) y^{\prime }-y \left (y x -x^{4}-1\right )&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

35.551

\(691\)

11561

\begin{align*} \left (-x +y\right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}}&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

273.131

\(692\)

11573

\begin{align*} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2}&=0 \\ \end{align*}

[_rational]

12.166

\(693\)

11606

\begin{align*} \left (\frac {y^{2}}{b}+\frac {x^{2}}{a}\right ) \left (y y^{\prime }+x \right )+\frac {\left (a -b \right ) \left (y y^{\prime }-x \right )}{a +b}&=0 \\ \end{align*}

[_rational]

11.591

\(694\)

11607

\begin{align*} \left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3}&=0 \\ \end{align*}

[_rational]

10.148

\(695\)

11643

\begin{align*} y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

44.971

\(696\)

11644

\begin{align*} y^{\prime } \cos \left (y\right )+x \sin \left (y\right ) \cos \left (y\right )^{2}-\sin \left (y\right )^{3}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

63.739

\(697\)

11650

\begin{align*} x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

65.995

\(698\)

11740

\begin{align*} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

101.598

\(699\)

11744

\begin{align*} x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

58.881

\(700\)

11748

\begin{align*} \left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

147.262

\(701\)

11767

\begin{align*} \left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2}&=0 \\ \end{align*}

[_rational]

19.806

\(702\)

11769

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-y x&=0 \\ \end{align*}

[_rational]

31.524

\(703\)

11776

\begin{align*} y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x +a y^{2}+b x +c&=0 \\ \end{align*}

[_rational]

70.948

\(704\)

11788

\begin{align*} \left (a y^{2}+b x +c \right ) {y^{\prime }}^{2}-b y y^{\prime }+d y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

174.924

\(705\)

11790

\begin{align*} x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

[_rational]

58.264

\(706\)

11792

\begin{align*} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (-x +y\right ) y^{\prime }-y^{2} \left (x^{2} y-1\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

44.530

\(707\)

11793

\begin{align*} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

64.126

\(708\)

11794

\begin{align*} \left (y^{4}+y^{2} x^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x -y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

135.281

\(709\)

11795

\begin{align*} 9 y^{4} \left (x^{2}-1\right ) {y^{\prime }}^{2}-6 x y^{5} y^{\prime }-4 x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

36.860

\(710\)

11796

\begin{align*} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (y^{2}-x^{2}\right ) y^{\prime }-y^{2} \left (y^{2} x^{4}-1\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

30.306

\(711\)

11797

\begin{align*} \left (a^{2} \sqrt {x^{2}+y^{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a^{2} \sqrt {x^{2}+y^{2}}-y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

171.739

\(712\)

11798

\begin{align*} \left (a \left (x^{2}+y^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a \left (x^{2}+y^{2}\right )^{{3}/{2}}-y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

134.908

\(713\)

11801

\begin{align*} f \left (x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

70.013

\(714\)

11817

\begin{align*} {y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

56.059

\(715\)

11829

\begin{align*} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

218.277

\(716\)

11840

\begin{align*} x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

20.105

\(717\)

11845

\begin{align*} y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.119

\(718\)

11846

\begin{align*} a y \sqrt {1+{y^{\prime }}^{2}}-2 y y^{\prime } x +y^{2}-x^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

267.316

\(719\)

11847

\begin{align*} f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

85.413

\(720\)

11857

\begin{align*} a \,x^{n} f \left (y^{\prime }\right )+y^{\prime } x -y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.414

\(721\)

11858

\begin{align*} f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.720

\(722\)

11859

\begin{align*} f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.968

\(723\)

11864

\begin{align*} y^{\prime }&=\frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

7.980

\(724\)

11865

\begin{align*} y^{\prime }&=\frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.051

\(725\)

11866

\begin{align*} y^{\prime }&=-\frac {\left (a \,x^{2}-2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

7.983

\(726\)

11868

\begin{align*} y^{\prime }&=F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

19.962

\(727\)

11869

\begin{align*} y^{\prime }&=\frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.850

\(728\)

11870

\begin{align*} y^{\prime }&=\frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10.498

\(729\)

11874

\begin{align*} y^{\prime }&=\frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.380

\(730\)

11875

\begin{align*} y^{\prime }&=\frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

11.641

\(731\)

11876

\begin{align*} y^{\prime }&=\frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.601

\(732\)

11877

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.406

\(733\)

11878

\begin{align*} y^{\prime }&=\frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

12.104

\(734\)

11884

\begin{align*} y^{\prime }&=\frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.083

\(735\)

11885

\begin{align*} y^{\prime }&=\frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \\ \end{align*}

[NONE]

9.165

\(736\)

11886

\begin{align*} y^{\prime }&=\frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.259

\(737\)

11887

\begin{align*} y^{\prime }&=\frac {2 y^{3}}{1+2 F \left (\frac {1+4 x y^{2}}{y^{2}}\right ) y} \\ \end{align*}

[‘x=_G(y,y’)‘]

7.974

\(738\)

11889

\begin{align*} y^{\prime }&=-\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9.899

\(739\)

11900

\begin{align*} y^{\prime }&=\frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

12.019

\(740\)

11901

\begin{align*} y^{\prime }&=\frac {\left (1+y\right ) \left (\left (y-\ln \left (1+y\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \\ \end{align*}

[‘y=_G(x,y’)‘]

19.647

\(741\)

11902

\begin{align*} y^{\prime }&=\frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

9.166

\(742\)

11908

\begin{align*} y^{\prime }&=\frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.145

\(743\)

11909

\begin{align*} y^{\prime }&=\frac {x}{y+\sqrt {x^{2}+1}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

71.332

\(744\)

11917

\begin{align*} y^{\prime }&=\frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

55.192

\(745\)

11921

\begin{align*} y^{\prime }&=-\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \\ \end{align*}

[‘x=_G(y,y’)‘]

16.421

\(746\)

11922

\begin{align*} y^{\prime }&=\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \\ \end{align*}

[‘y=_G(x,y’)‘]

16.798

\(747\)

11923

\begin{align*} y^{\prime }&=\frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \\ \end{align*}

[‘y=_G(x,y’)‘]

21.949

\(748\)

11924

\begin{align*} y^{\prime }&=\frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

34.161

\(749\)

11925

\begin{align*} y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{2}}{y} \\ \end{align*}

[_rational]

9.513

\(750\)

11927

\begin{align*} y^{\prime }&=-\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

31.865

\(751\)

11930

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.868

\(752\)

11931

\begin{align*} y^{\prime }&=-\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

24.016

\(753\)

11935

\begin{align*} y^{\prime }&=\frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

59.503

\(754\)

11946

\begin{align*} y^{\prime }&=\frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

37.138

\(755\)

11948

\begin{align*} y^{\prime }&=-\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.498

\(756\)

11952

\begin{align*} y^{\prime }&=\frac {\left (-2 y^{{3}/{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14.421

\(757\)

11953

\begin{align*} y^{\prime }&=\frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

20.082

\(758\)

11954

\begin{align*} y^{\prime }&=\frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \\ \end{align*}

[_rational]

9.722

\(759\)

11955

\begin{align*} y^{\prime }&=\frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

73.390

\(760\)

11959

\begin{align*} y^{\prime }&=\frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16.809

\(761\)

11961

\begin{align*} y^{\prime }&=\frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

22.589

\(762\)

11967

\begin{align*} y^{\prime }&=\frac {y+x^{2} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.950

\(763\)

11973

\begin{align*} y^{\prime }&=\frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4 x +4} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

20.767

\(764\)

11975

\begin{align*} y^{\prime }&=\frac {y+x^{3} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.336

\(765\)

11977

\begin{align*} y^{\prime }&=\frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17.932

\(766\)

11982

\begin{align*} y^{\prime }&=\frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3 x +3} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

22.451

\(767\)

11989

\begin{align*} y^{\prime }&=-\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right ) x \left (1+y\right )^{2}}{8} \\ \end{align*}

[‘y=_G(x,y’)‘]

67.592

\(768\)

11990

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right )^{2} x \left (1+y\right )^{2}}{16} \\ \end{align*}

[‘x=_G(y,y’)‘]

58.883

\(769\)

11991

\begin{align*} y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \\ \end{align*}

[_rational]

11.059

\(770\)

11992

\begin{align*} y^{\prime }&=\frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (x +1\right ) y} \\ \end{align*}

[‘y=_G(x,y’)‘]

43.423

\(771\)

11993

\begin{align*} y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

57.256

\(772\)

11994

\begin{align*} y^{\prime }&=\frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

21.626

\(773\)

11997

\begin{align*} y^{\prime }&=\frac {-x^{2}+x +2+2 x^{3} \sqrt {x^{2}-4 x +4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

23.845

\(774\)

11998

\begin{align*} y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \\ \end{align*}

[_rational]

59.937

\(775\)

12002

\begin{align*} y^{\prime }&=\frac {x^{3} \left (3 x +3+\sqrt {9 x^{4}-4 y^{3}}\right )}{\left (x +1\right ) y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

28.096

\(776\)

12012

\begin{align*} y^{\prime }&=\frac {\left (2 y^{{3}/{2}}-3 \,{\mathrm e}^{x}\right )^{3} {\mathrm e}^{x}}{4 \left (2 y^{{3}/{2}}-3 \,{\mathrm e}^{x}+2\right ) \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.970

\(777\)

12014

\begin{align*} y^{\prime }&=\frac {-x^{2}-x -a x -a +2 x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10.141

\(778\)

12016

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{3}\right ) y}{x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.265

\(779\)

12023

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{{5}/{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.785

\(780\)

12024

\begin{align*} y^{\prime }&=-\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

96.595

\(781\)

12025

\begin{align*} y^{\prime }&=-\frac {i \left (8 i x +16 y^{4}+8 y^{2} x^{2}+x^{4}\right )}{32 y} \\ \end{align*}

[_rational]

0.706

\(782\)

12028

\begin{align*} y^{\prime }&=-\frac {i \left (i x +x^{4}+2 y^{2} x^{2}+y^{4}\right )}{y} \\ \end{align*}

[_rational]

0.635

\(783\)

12031

\begin{align*} y^{\prime }&=\frac {\left (x -y\right )^{2} \left (x +y\right )^{2} x}{y} \\ \end{align*}

[_rational]

4.231

\(784\)

12034

\begin{align*} y^{\prime }&=\frac {\cos \left (y\right ) \left (\cos \left (y\right ) x^{3}-x -1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

42.875

\(785\)

12035

\begin{align*} y^{\prime }&=\frac {\left (x +1+x^{4} \ln \left (y\right )\right ) y \ln \left (y\right )}{x \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

6.020

\(786\)

12040

\begin{align*} y^{\prime }&=\frac {\left (2 x +2+x^{3} y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

6.680

\(787\)

12041

\begin{align*} y^{\prime }&=-\frac {i \left (54 i x^{2}+81 y^{4}+18 y^{2} x^{4}+x^{8}\right ) x}{243 y} \\ \end{align*}

[_rational]

0.768

\(788\)

12042

\begin{align*} y^{\prime }&=\frac {\left (x y^{2}+1\right )^{3}}{x^{4} \left (x y^{2}+1+x \right ) y} \\ \end{align*}

[_rational]

6.605

\(789\)

12044

\begin{align*} y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-x \right ) y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

22.959

\(790\)

12046

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.123

\(791\)

12051

\begin{align*} y^{\prime }&=-\frac {i \left (16 i x^{2}+16 y^{4}+8 y^{2} x^{4}+x^{8}\right ) x}{32 y} \\ \end{align*}

[_rational]

0.750

\(792\)

12054

\begin{align*} y^{\prime }&=\frac {\left (x +1+\ln \left (y\right ) x \right ) \ln \left (y\right ) y}{x \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

21.117

\(793\)

12062

\begin{align*} y^{\prime }&=\frac {y x +y+x \sqrt {x^{2}+y^{2}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.941

\(794\)

12078

\begin{align*} y^{\prime }&=\frac {y^{3} x \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+3 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+9 y} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class C‘]]

43.714

\(795\)

12084

\begin{align*} y^{\prime }&=-\frac {-\frac {1}{x}-\textit {\_F1} \left (y+\frac {1}{x}\right )}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

6.798

\(796\)

12085

\begin{align*} y^{\prime }&=\frac {\textit {\_F1} \left (y^{2}-2 \ln \left (x \right )\right )}{\sqrt {y^{2}}\, x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.837

\(797\)

12086

\begin{align*} y^{\prime }&=\frac {-x \sin \left (2 y\right )-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{4}+x^{4}}{2 x \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

13.477

\(798\)

12087

\begin{align*} y^{\prime }&=\frac {y x +y+x^{4} \sqrt {x^{2}+y^{2}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.206

\(799\)

12088

\begin{align*} y^{\prime }&=\frac {-x \sin \left (2 y\right )-\sin \left (2 y\right )+x \cos \left (2 y\right )+x}{2 x \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

78.919

\(800\)

12089

\begin{align*} y^{\prime }&=-\frac {1}{-x -\textit {\_F1} \left (y-\ln \left (x \right )\right ) y \,{\mathrm e}^{y}} \\ \end{align*}

[NONE]

7.731

\(801\)

12093

\begin{align*} y^{\prime }&=\frac {x^{3} {\mathrm e}^{y}+x^{4}+{\mathrm e}^{y} y-{\mathrm e}^{y} \ln \left ({\mathrm e}^{y}+x \right )+y x -\ln \left ({\mathrm e}^{y}+x \right ) x +x}{x^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

45.898

\(802\)

12094

\begin{align*} y^{\prime }&=\frac {x^{2}}{2}+\sqrt {x^{3}-6 y}+x^{2} \sqrt {x^{3}-6 y}+x^{3} \sqrt {x^{3}-6 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

52.799

\(803\)

12095

\begin{align*} y^{\prime }&=\frac {\left (-\sqrt {a}\, x^{3}+2 \sqrt {a \,x^{4}+8 y}+2 x^{2} \sqrt {a \,x^{4}+8 y}+2 x^{3} \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

55.975

\(804\)

12097

\begin{align*} y^{\prime }&=\frac {\left (3+y\right )^{3} {\mathrm e}^{\frac {9 x^{2}}{2}} x \,{\mathrm e}^{\frac {3 x^{2}}{2}} {\mathrm e}^{-3 x^{2}}}{243 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+81 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+243 y} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class C‘]]

58.216

\(805\)

12098

\begin{align*} y^{\prime }&=\frac {\left (x -y\right )^{3} \left (x +y\right )^{3} x}{\left (-y^{2}+x^{2}-1\right ) y} \\ \end{align*}

[_rational]

12.450

\(806\)

12099

\begin{align*} y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{3} \cos \left (2 y\right ) \ln \left (x \right )+x^{3} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \\ \end{align*}

[‘y=_G(x,y’)‘]

14.194

\(807\)

12101

\begin{align*} y^{\prime }&=-\frac {2 x}{3}+\sqrt {x^{2}+3 y}+x^{2} \sqrt {x^{2}+3 y}+x^{3} \sqrt {x^{2}+3 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

44.576

\(808\)

12102

\begin{align*} y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{2} \cos \left (2 y\right ) \ln \left (x \right )+x^{2} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \\ \end{align*}

[‘y=_G(x,y’)‘]

13.274

\(809\)

12107

\begin{align*} y^{\prime }&=\frac {\left (\left (x^{2}+1\right )^{{3}/{2}} x^{2}+\left (x^{2}+1\right )^{{3}/{2}}+y^{2} \left (x^{2}+1\right )^{{3}/{2}}+x^{2} y^{3}+y^{3}\right ) x}{\left (x^{2}+1\right )^{3}} \\ \end{align*}

[_Abel]

64.852

\(810\)

12108

\begin{align*} y^{\prime }&=\frac {\left (3 x y^{2}+x +3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

34.135

\(811\)

12109

\begin{align*} y^{\prime }&=-\frac {-y+x^{3} \sqrt {x^{2}+y^{2}}-x^{2} \sqrt {x^{2}+y^{2}}\, y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.620

\(812\)

12111

\begin{align*} y^{\prime }&=\frac {1+2 \sqrt {4 x^{2} y+1}\, x^{3}+2 x^{5} \sqrt {4 x^{2} y+1}+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.063

\(813\)

12113

\begin{align*} y^{\prime }&=\frac {2 a +\sqrt {-y^{2}+4 a x}+x^{2} \sqrt {-y^{2}+4 a x}+x^{3} \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

65.386

\(814\)

12115

\begin{align*} y^{\prime }&=-\frac {-y+x^{4} \sqrt {x^{2}+y^{2}}-x^{3} \sqrt {x^{2}+y^{2}}\, y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.549

\(815\)

12116

\begin{align*} y^{\prime }&=\frac {\left (x^{4}+3 x y^{2}+3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.847

\(816\)

12117

\begin{align*} y^{\prime }&=-\frac {1}{-\left (y^{3}\right )^{{2}/{3}} x -\textit {\_F1} \left (y^{3}-3 \ln \left (x \right )\right ) \left (y^{3}\right )^{{1}/{3}} x} \\ \end{align*}

[NONE]

5.394

\(817\)

12122

\begin{align*} y^{\prime }&=\frac {b \,x^{3}+c^{2} \sqrt {a}-2 c b \,x^{2} \sqrt {a}+2 c y^{2} a^{{3}/{2}}+b^{2} x^{4} \sqrt {a}-2 y^{2} a^{{3}/{2}} b \,x^{2}+a^{{5}/{2}} y^{4}}{a \,x^{2} y} \\ \end{align*}

[_rational]

17.375

\(818\)

12126

\begin{align*} y^{\prime }&=\frac {3 x^{3}+\sqrt {-9 x^{4}+4 y^{3}}+x^{2} \sqrt {-9 x^{4}+4 y^{3}}+x^{3} \sqrt {-9 x^{4}+4 y^{3}}}{y^{2}} \\ \end{align*}

[NONE]

20.255

\(819\)

12127

\begin{align*} y^{\prime }&=\frac {1}{-x +\left (\frac {1}{y}+1\right ) x +\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2}-\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2} \left (\frac {1}{y}+1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

9.516

\(820\)

12128

\begin{align*} y^{\prime }&=\frac {x}{2}+\frac {1}{2}+\sqrt {x^{2}+2 x +1-4 y}+x^{2} \sqrt {x^{2}+2 x +1-4 y}+x^{3} \sqrt {x^{2}+2 x +1-4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

43.459

\(821\)

12129

\begin{align*} y^{\prime }&=\frac {\cosh \left (x \right )}{\sinh \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sinh \left (x \right )\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

13.368

\(822\)

12130

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+\sqrt {x^{2}-4 x +4 y}+x^{2} \sqrt {x^{2}-4 x +4 y}+x^{3} \sqrt {x^{2}-4 x +4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

44.345

\(823\)

12131

\begin{align*} y^{\prime }&=\frac {1}{\sin \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sin \left (x \right )\right )+\ln \left (\cos \left (x \right )+1\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

20.097

\(824\)

12135

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x^{2} \ln \left (x \right )^{2}+2 x^{2} \ln \left (y\right ) \ln \left (x \right )+x^{2} \ln \left (y\right )^{2}\right )}{x} \\ \end{align*}

[NONE]

17.721

\(825\)

12136

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right )-1+\ln \left (x \right )+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}\right )}{x} \\ \end{align*}

[NONE]

17.650

\(826\)

12137

\begin{align*} y^{\prime }&=-\frac {\left (-\frac {1}{x}-\textit {\_F1} \left (y^{2}-2 x \right )\right ) x}{\sqrt {y^{2}}} \\ \end{align*}

[NONE]

8.165

\(827\)

12138

\begin{align*} y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+\sqrt {x^{2}-2 x +1+8 y}+x^{2} \sqrt {x^{2}-2 x +1+8 y}+x^{3} \sqrt {x^{2}-2 x +1+8 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

44.681

\(828\)

12140

\begin{align*} y^{\prime }&=-\frac {-x -\textit {\_F1} \left (y^{2}-2 x \right )}{\sqrt {y^{2}}\, x} \\ \end{align*}

[NONE]

8.746

\(829\)

12142

\begin{align*} y^{\prime }&=-\frac {\left (-\frac {y \,{\mathrm e}^{\frac {1}{x}}}{x}-\textit {\_F1} \left (y \,{\mathrm e}^{\frac {1}{x}}\right )\right ) {\mathrm e}^{-\frac {1}{x}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.332

\(830\)

12143

\begin{align*} y^{\prime }&=\frac {y+x \sqrt {x^{2}+y^{2}}+x^{3} \sqrt {x^{2}+y^{2}}+x^{4} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.912

\(831\)

12145

\begin{align*} y^{\prime }&=\left (\frac {\ln \left (-1+y\right ) y}{\left (1-y\right ) \ln \left (x \right ) x}-\frac {\ln \left (-1+y\right )}{\left (1-y\right ) \ln \left (x \right ) x}-f \left (x \right )\right ) \left (1-y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16.283

\(832\)

12146

\begin{align*} y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+\sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

49.426

\(833\)

12150

\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x +x +x^{3}+x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.893

\(834\)

12155

\begin{align*} y^{\prime }&=-\frac {-y x -y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

27.336

\(835\)

12158

\begin{align*} y^{\prime }&=\frac {1+y^{4}-8 a x y^{2}+16 a^{2} x^{2}+y^{6}-12 y^{4} a x +48 y^{2} a^{2} x^{2}-64 a^{3} x^{3}}{y} \\ \end{align*}

[_rational]

18.059

\(836\)

12159

\begin{align*} y^{\prime }&=-\frac {-y x -y+x^{2} \sqrt {x^{2}+y^{2}}-x \sqrt {x^{2}+y^{2}}\, y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

25.824

\(837\)

12163

\begin{align*} y^{\prime }&=\frac {\left (a^{3}+a^{3} y^{4}+2 a^{2} y^{2} b \,x^{2}+b^{2} x^{4} a +y^{6} a^{3}+3 y^{4} a^{2} b \,x^{2}+3 y^{2} a \,b^{2} x^{4}+b^{3} x^{6}\right ) x}{a^{{7}/{2}} y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

24.708

\(838\)

12164

\begin{align*} y^{\prime }&=-\frac {\left (-1-y^{4}+2 y^{2} x^{2}-x^{4}-y^{6}+3 x^{2} y^{4}-3 y^{2} x^{4}+x^{6}\right ) x}{y} \\ \end{align*}

[_rational]

17.862

\(839\)

12165

\begin{align*} y^{\prime }&=-\frac {i \left (32 i x +64+64 y^{4}+32 y^{2} x^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 y^{2} x^{4}+x^{6}\right )}{128 y} \\ \end{align*}

[_rational]

2.421

\(840\)

12169

\begin{align*} y^{\prime }&=-\frac {\left (-8-8 y^{3}+24 y^{{3}/{2}} {\mathrm e}^{x}-18 \,{\mathrm e}^{2 x}-8 y^{{9}/{2}}+36 y^{3} {\mathrm e}^{x}-54 \,{\mathrm e}^{2 x} y^{{3}/{2}}+27 \,{\mathrm e}^{3 x}\right ) {\mathrm e}^{x}}{8 \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

64.298

\(841\)

12174

\begin{align*} y^{\prime }&=-\frac {i \left (i x +1+x^{4}+2 y^{2} x^{2}+y^{4}+x^{6}+3 y^{2} x^{4}+3 x^{2} y^{4}+y^{6}\right )}{y} \\ \end{align*}

[_rational]

2.242

\(842\)

12189

\begin{align*} y^{\prime }&=\frac {x^{3}+y^{4} x^{3}+2 y^{2} x^{2}+x +x^{3} y^{6}+3 x^{2} y^{4}+3 x y^{2}+1}{x^{5} y} \\ \end{align*}

[_rational]

19.411

\(843\)

12196

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )+\ln \left (x \right )+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \\ \end{align*}

[NONE]

30.178

\(844\)

12197

\begin{align*} y^{\prime }&=\frac {y \left (x \ln \left (x \right )+\ln \left (x \right )+\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \\ \end{align*}

[NONE]

30.419

\(845\)

12208

\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x \right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.801

\(846\)

12210

\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.415

\(847\)

12232

\begin{align*} y^{\prime }&=-\frac {-y+x^{2} \sqrt {x^{2}+y^{2}}-x \sqrt {x^{2}+y^{2}}\, y+x^{4} \sqrt {x^{2}+y^{2}}-x^{3} \sqrt {x^{2}+y^{2}}\, y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

19.999

\(848\)

12233

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x} \\ \end{align*}

[NONE]

11.077

\(849\)

12236

\begin{align*} y^{\prime }&=\frac {y \left (-1-x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2}-x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} \ln \left (x \right )+x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y+2 x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y \ln \left (x \right )+x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y \ln \left (x \right )^{2}\right )}{\left (1+\ln \left (x \right )\right ) x} \\ \end{align*}

[_Bernoulli]

13.234

\(850\)

12237

\begin{align*} y^{\prime }&=\frac {y \left (-1-x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}}-x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} \ln \left (x \right )+x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y+2 x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y \ln \left (x \right )+x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y \ln \left (x \right )^{2}\right )}{\left (1+\ln \left (x \right )\right ) x} \\ \end{align*}

[_Bernoulli]

13.035

\(851\)

12264

\begin{align*} y^{\prime }&=\frac {y \left (y^{2} x^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

15.217

\(852\)

12292

\begin{align*} y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.734

\(853\)

12295

\begin{align*} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y&=0 \\ \end{align*}

[_Titchmarsh]

1.120

\(854\)

12296

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.525

\(855\)

12299

\begin{align*} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.595

\(856\)

12300

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.446

\(857\)

12301

\begin{align*} y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.056

\(858\)

12302

\begin{align*} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y&=0 \\ \end{align*}

[_ellipsoidal]

2.046

\(859\)

12303

\begin{align*} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y&=0 \\ \end{align*}

[_ellipsoidal]

2.155

\(860\)

12305

\begin{align*} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.949

\(861\)

12306

\begin{align*} y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.272

\(862\)

12307

\begin{align*} y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.635

\(863\)

12312

\begin{align*} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.148

\(864\)

12313

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.815

\(865\)

12316

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.419

\(866\)

12317

\begin{align*} y^{\prime \prime }+y^{\prime } x -n y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.293

\(867\)

12319

\begin{align*} -a y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

2.326

\(868\)

12321

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.132

\(869\)

12323

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (3 x^{2}+2 n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.525

\(870\)

12327

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.396

\(871\)

12329

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.753

\(872\)

12330

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.704

\(873\)

12335

\begin{align*} y^{\prime \prime }+a \,x^{-1+q} y^{\prime }+b \,x^{q -2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.140

\(874\)

12340

\begin{align*} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.878

\(875\)

12343

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+v \left (v +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.003

\(876\)

12345

\begin{align*} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.748

\(877\)

12349

\begin{align*} y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.183

\(878\)

12350

\begin{align*} y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.321

\(879\)

12351

\begin{align*} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.384

\(880\)

12353

\begin{align*} 4 y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.919

\(881\)

12355

\begin{align*} a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.110

\(882\)

12358

\begin{align*} \left (a +x \right ) y+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.654

\(883\)

12362

\begin{align*} y^{\prime \prime } x +y^{\prime }+\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.850

\(884\)

12365

\begin{align*} y^{\prime \prime } x -y^{\prime }+x^{3} \left ({\mathrm e}^{x^{2}}-v^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.937

\(885\)

12373

\begin{align*} y^{\prime \prime } x +\left (x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.236

\(886\)

12374

\begin{align*} y^{\prime \prime } x +\left (x +a +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.459

\(887\)

12376

\begin{align*} y^{\prime \prime } x -y^{\prime } x -a y&=0 \\ \end{align*}

[_Laguerre]

2.425

\(888\)

12379

\begin{align*} y^{\prime \prime } x +\left (b -x \right ) y^{\prime }-a y&=0 \\ \end{align*}

[_Laguerre]

4.091

\(889\)

12380

\begin{align*} y^{\prime \prime } x -2 \left (x -1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.696

\(890\)

12381

\begin{align*} y^{\prime \prime } x -\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.133

\(891\)

12382

\begin{align*} y^{\prime \prime } x +\left (a x +b +n \right ) y^{\prime }+n a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.048

\(892\)

12383

\begin{align*} y^{\prime \prime } x -\left (a +b \right ) \left (x +1\right ) y^{\prime }+a b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.857

\(893\)

12384

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.926

\(894\)

12386

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.359

\(895\)

12390

\begin{align*} y^{\prime \prime } x -2 \left (x^{2}-a \right ) y^{\prime }+2 n x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.939

\(896\)

12397

\begin{align*} 2 y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.042

\(897\)

12398

\begin{align*} 2 y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

[_Laguerre]

3.869

\(898\)

12400

\begin{align*} 4 y^{\prime \prime } x -\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.799

\(899\)

12403

\begin{align*} 4 y^{\prime \prime } x +4 y-\left (2+x \right ) y+l y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.306

\(900\)

12404

\begin{align*} 4 y^{\prime \prime } x +4 m y^{\prime }-\left (x -2 m -4 n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.921

\(901\)

12405

\begin{align*} 16 y^{\prime \prime } x +8 y^{\prime }-\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.331

\(902\)

12408

\begin{align*} 5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.337

\(903\)

12409

\begin{align*} 2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.203

\(904\)

12410

\begin{align*} 2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.217

\(905\)

12411

\begin{align*} \left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.723

\(906\)

12420

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.721

\(907\)

12422

\begin{align*} x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.931

\(908\)

12423

\begin{align*} x^{2} y^{\prime \prime }+a y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.276

\(909\)

12437

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.963

\(910\)

12438

\begin{align*} x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.638

\(911\)

12439

\begin{align*} x^{2} y^{\prime \prime }+2 \left (a +x \right ) y^{\prime }-b \left (b -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.107

\(912\)

12454

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.561

\(913\)

12456

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.040

\(914\)

12461

\begin{align*} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.638

\(915\)

12463

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.293

\(916\)

12466

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.422

\(917\)

12471

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.000

\(918\)

12472

\begin{align*} x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.948

\(919\)

12473

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.151

\(920\)

12476

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.495

\(921\)

12478

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.574

\(922\)

12479

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.614

\(923\)

12480

\begin{align*} x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+\left (-1\right )^{n} a -a^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.296

\(924\)

12481

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.207

\(925\)

12482

\begin{align*} x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (a +x \tan \left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.711

\(926\)

12483

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

42.018

\(927\)

12484

\begin{align*} x^{2} y^{\prime \prime }+2 x f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right ) x +f \left (x \right )^{2}-f \left (x \right )+a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.876

\(928\)

12485

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} f \left (x \right ) y^{\prime }+\left (x^{2} \left (f^{\prime }\left (x \right )+f \left (x \right )^{2}+a \right )-v \left (v -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.364

\(929\)

12486

\begin{align*} x^{2} y^{\prime \prime }+\left (x -2 x^{2} f \left (x \right )\right ) y^{\prime }+\left (x^{2} \left (1+f \left (x \right )^{2}-f^{\prime }\left (x \right )\right )-f \left (x \right ) x -v^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.116

\(930\)

12491

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.022

\(931\)

12496

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

3.922

\(932\)

12497

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {\left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )-\left (n +1\right ) x \operatorname {LegendreP}\left (n , x\right )}{x^{2}-1}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.682

\(933\)

12500

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

102.887

\(934\)

12503

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -l y&=0 \\ \end{align*}

[_Gegenbauer]

88.941

\(935\)

12504

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

89.867

\(936\)

12505

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x -\left (v +2\right ) \left (v -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

920.736

\(937\)

12508

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (v +n +1\right ) \left (v -n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

96.447

\(938\)

12509

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (v -n +1\right ) \left (v +n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

87.643

\(939\)

12512

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

66.579

\(940\)

12513

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

167.035

\(941\)

12516

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.159

\(942\)

12520

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

[_Jacobi]

51.385

\(943\)

12522

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[_Jacobi]

105.984

\(944\)

12523

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (1+a \right ) x +b \right ) y^{\prime }-l y&=0 \\ \end{align*}

[_Jacobi]

137.047

\(945\)

12525

\begin{align*} x \left (2+x \right ) y^{\prime \prime }+2 \left (n +1+\left (n +1-2 l \right ) x -l \,x^{2}\right ) y^{\prime }+\left (2 l \left (p -n -1\right ) x +2 p l +m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

202.668

\(946\)

12529

\begin{align*} \left (x -1\right ) \left (x -2\right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

384.569

\(947\)

12532

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[_Jacobi]

51.674

\(948\)

12533

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y&=0 \\ \end{align*}

[_Jacobi]

94.862

\(949\)

12537

\begin{align*} 4 x^{2} y^{\prime \prime }-\left (-4 k x +4 m^{2}+x^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.943

\(950\)

12539

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2 \left (1-m +2 l \right ) x -m^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.973

\(951\)

12542

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.742

\(952\)

12549

\begin{align*} x \left (4 x -1\right ) y^{\prime \prime }+\left (\left (4 a +2\right ) x -a \right ) y^{\prime }+a \left (-1+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

90.833

\(953\)

12555

\begin{align*} 48 x \left (x -1\right ) y^{\prime \prime }+\left (152 x -40\right ) y^{\prime }+53 y&=0 \\ \end{align*}

[_Jacobi]

48.572

\(954\)

12557

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (120 x -48\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

48.695

\(955\)

12558

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (168 x -96\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

48.618

\(956\)

12559

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+\left (c \,x^{2}+d x +f \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.124

\(957\)

12560

\begin{align*} \operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.582

\(958\)

12565

\begin{align*} \operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

122.146

\(959\)

12566

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

187.510

\(960\)

12568

\begin{align*} -y+2 y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.422

\(961\)

12569

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

43.985

\(962\)

12572

\begin{align*} x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

58.686

\(963\)

12574

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

159.931

\(964\)

12576

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

205.305

\(965\)

12577

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

196.734

\(966\)

12579

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_elliptic, _class_II]]

308.184

\(967\)

12580

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[[_elliptic, _class_I]]

73.414

\(968\)

12581

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

171.256

\(969\)

12588

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

190.695

\(970\)

12590

\begin{align*} y^{\prime \prime }&=\frac {2 y^{\prime }}{x \left (x -2\right )}-\frac {y}{x^{2} \left (x -2\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

148.143

\(971\)

12592

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (x -1\right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (x -1\right ) \left (x -a \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

457.559

\(972\)

12593

\begin{align*} y^{\prime \prime }&=-\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

467.913

\(973\)

12596

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

45.119

\(974\)

12597

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (1+a \right ) x -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.309

\(975\)

12598

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.033

\(976\)

12602

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

262.293

\(977\)

12604

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

174.302

\(978\)

12606

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} a \left (1-a \right )-b \left (x +b \right )\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.839

\(979\)

12607

\begin{align*} y^{\prime \prime }&=-\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.608

\(980\)

12611

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.718

\(981\)

12612

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

49.106

\(982\)

12619

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

156.346

\(983\)

12620

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

221.127

\(984\)

12622

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

78.061

\(985\)

12623

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

51.746

\(986\)

12625

\begin{align*} x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

218.426

\(987\)

12626

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

232.787

\(988\)

12627

\begin{align*} y^{\prime \prime }&=\frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (-1+a \right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (-1+a \right )-v \left (v +1\right )\right )-a \left (1+a \right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

594.730

\(989\)

12630

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

183.268

\(990\)

12631

\begin{align*} y^{\prime \prime }&=-\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

153.638

\(991\)

12634

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

87.141

\(992\)

12635

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

122.072

\(993\)

12636

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.627

\(994\)

12637

\begin{align*} y^{\prime \prime }&=\frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

252.987

\(995\)

12638

\begin{align*} y^{\prime \prime }&=-\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

295.853

\(996\)

12647

\begin{align*} y^{\prime \prime }&=-\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.012

\(997\)

12651

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-a^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

39.840

\(998\)

12652

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (-v \left (v +1\right ) \left (x -1\right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

49.761

\(999\)

12655

\begin{align*} y^{\prime \prime }&=-\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

222.533

\(1000\)

12656

\begin{align*} y^{\prime \prime }&=-\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.155

\(1001\)

12661

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

262.699

\(1002\)

12665

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (1+a \right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

592.001

\(1003\)

12666

\begin{align*} y^{\prime \prime }&=-\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4162.471

\(1004\)

12670

\begin{align*} y^{\prime \prime }&=-\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4405.300

\(1005\)

12671

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1300.448

\(1006\)

12673

\begin{align*} y^{\prime \prime }&=-\frac {\left (a p \,x^{b}+q \right ) y^{\prime }}{x \left (a \,x^{b}-1\right )}-\frac {\left (a r \,x^{b}+s \right ) y}{x^{2} \left (a \,x^{b}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.714

\(1007\)

12674

\begin{align*} y^{\prime \prime }&=\frac {y}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

\(1008\)

12677

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.676

\(1009\)

12678

\begin{align*} y^{\prime \prime }&=-\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.560

\(1010\)

12679

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.859

\(1011\)

12683

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }-\left (a \cos \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.277

\(1012\)

12686

\begin{align*} y^{\prime \prime }&=-\frac {a y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.635

\(1013\)

12687

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.325

\(1014\)

12688

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.962

\(1015\)

12689

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.267

\(1016\)

12690

\begin{align*} y^{\prime \prime }&=-\frac {\left (-\left (a^{2} b^{2}-\left (1+a \right )^{2}\right ) \sin \left (x \right )^{2}-a \left (1+a \right ) b \sin \left (2 x \right )-a \left (-1+a \right )\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.447

\(1017\)

12691

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.060

\(1018\)

12693

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.501

\(1019\)

12696

\begin{align*} y^{\prime \prime }&=-\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.830

\(1020\)

12697

\begin{align*} y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.677

\(1021\)

12698

\begin{align*} y^{\prime \prime }&=-\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.336

\(1022\)

12699

\begin{align*} y^{\prime \prime }&=-\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.802

\(1023\)

12701

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.935

\(1024\)

12703

\begin{align*} y^{\prime \prime }&=-\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.457

\(1025\)

12704

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.485

\(1026\)

12709

\begin{align*} y^{\prime \prime \prime }+y a \,x^{3}-b x&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.038

\(1027\)

12710

\begin{align*} y^{\prime \prime \prime }-a \,x^{b} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

\(1028\)

12713

\begin{align*} a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.032

\(1029\)

12714

\begin{align*} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-a b y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.046

\(1030\)

12715

\begin{align*} y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

\(1031\)

12716

\begin{align*} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.049

\(1032\)

12717

\begin{align*} y f^{\prime }\left (x \right )+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

\(1033\)

12722

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime } x +2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

\(1034\)

12723

\begin{align*} a^{3} x^{3} y+3 a^{2} x^{2} y^{\prime }+3 a x y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.051

\(1035\)

12725

\begin{align*} f \left (x \right ) y+y^{\prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(1036\)

12726

\begin{align*} y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y\right )&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.044

\(1037\)

12728

\begin{align*} x y^{\prime \prime \prime }+3 y^{\prime \prime }+y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

\(1038\)

12729

\begin{align*} x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.037

\(1039\)

12730

\begin{align*} x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-y^{\prime } x -a y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(1040\)

12731

\begin{align*} x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(1041\)

12733

\begin{align*} 2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.035

\(1042\)

12734

\begin{align*} 2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(1043\)

12735

\begin{align*} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.055

\(1044\)

12737

\begin{align*} \left (2 x -1\right ) y^{\prime \prime \prime }-8 y^{\prime } x +8 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.034

\(1045\)

12739

\begin{align*} a \,x^{2} y-6 y^{\prime }+x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

\(1046\)

12740

\begin{align*} x^{2} y^{\prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }-y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.035

\(1047\)

12743

\begin{align*} x^{2} y^{\prime \prime \prime }-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.052

\(1048\)

12744

\begin{align*} x^{2} y^{\prime \prime \prime }+4 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime }+3 y x -f \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.042

\(1049\)

12747

\begin{align*} a \,x^{2} y+6 y^{\prime }+6 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(1050\)

12748

\begin{align*} x^{2} y^{\prime \prime \prime }-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

\(1051\)

12749

\begin{align*} x^{2} y^{\prime \prime \prime }-2 \left (n +1\right ) x y^{\prime \prime }+\left (a \,x^{2}+6 n \right ) y^{\prime }-2 a x y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(1052\)

12750

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.046

\(1053\)

12751

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

\(1054\)

12752

\begin{align*} x^{2} y^{\prime \prime \prime }-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.047

\(1055\)

12753

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.044

\(1056\)

12755

\begin{align*} -2 y x +\left (x^{2}+2\right ) y^{\prime }-2 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(1057\)

12756

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(1058\)

12757

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(1059\)

12758

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

\(1060\)

12759

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.066

\(1061\)

12762

\begin{align*} -2 \left (x^{2}+4\right ) y+x \left (x^{2}+8\right ) y^{\prime }-4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.046

\(1062\)

12764

\begin{align*} x^{3} y^{\prime \prime \prime }+3 \left (1-a \right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (-1+a \right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.072

\(1063\)

12765

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(1064\)

12767

\begin{align*} -12 y+3 \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

\(1065\)

12768

\begin{align*} \left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (2+x \right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(1066\)

12769

\begin{align*} 2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.061

\(1067\)

12770

\begin{align*} x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-4 \left (1+3 x \right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.056

\(1068\)

12772

\begin{align*} x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.044

\(1069\)

12773

\begin{align*} x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

\(1070\)

12774

\begin{align*} x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

\(1071\)

12775

\begin{align*} x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.048

\(1072\)

12776

\begin{align*} \left (x -a \right )^{3} \left (x -b \right )^{3} y^{\prime \prime \prime }-c y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(1073\)

12779

\begin{align*} y^{\prime \prime \prime } \sin \left (x \right )^{2}+3 y^{\prime \prime } \sin \left (x \right ) \cos \left (x \right )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \sin \left (x \right )^{2}\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right )&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.058

\(1074\)

12780

\begin{align*} y^{\prime \prime \prime }+y^{\prime } x +n y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

\(1075\)

12781

\begin{align*} y^{\prime \prime \prime }-y^{\prime } x -n y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.028

\(1076\)

12788

\begin{align*} y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.040

\(1077\)

12789

\begin{align*} y^{\prime \prime \prime \prime }+\left (a \,x^{2}+b \lambda +c \right ) y^{\prime \prime }+\left (a \,x^{2}+\beta \lambda +\gamma \right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.041

\(1078\)

12791

\begin{align*} a^{4} x^{4} y+4 a^{3} x^{3} y^{\prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a x y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.060

\(1079\)

12794

\begin{align*} y^{\prime \prime \prime \prime } x -\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.053

\(1080\)

12795

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.039

\(1081\)

12796

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2}&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.041

\(1082\)

12799

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.036

\(1083\)

12801

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.038

\(1084\)

12802

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16}&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.049

\(1085\)

12803

\begin{align*} x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-y^{\prime \prime } x +y^{\prime }-a^{4} x^{3} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.042

\(1086\)

12805

\begin{align*} x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (n +3\right ) \left (-2+n \right )\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

\(1087\)

12806

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 x^{4} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.100

\(1088\)

12807

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

\(1089\)

12808

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.048

\(1090\)

12809

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.054

\(1091\)

12810

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.054

\(1092\)

12813

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 x^{2 c} b^{2} c^{2}+6 \left (-1+a \right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (-1+a \right )-1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.099

\(1093\)

12814

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (-1+a \right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.094

\(1094\)

12815

\begin{align*} \nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16}&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.060

\(1095\)

12816

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.060

\(1096\)

12818

\begin{align*} y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.086

\(1097\)

12819

\begin{align*} y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.067

\(1098\)

12822

\begin{align*} y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right )&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.040

\(1099\)

12825

\begin{align*} y^{\left (5\right )}-a x y-b&=0 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.024

\(1100\)

12826

\begin{align*} y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.050

\(1101\)

12828

\begin{align*} x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.028

\(1102\)

12830

\begin{align*} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.054

\(1103\)

12831

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-a y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.023

\(1104\)

12832

\begin{align*} x^{10} y^{\left (5\right )}-a y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.038

\(1105\)

12833

\begin{align*} x^{{5}/{2}} y^{\left (5\right )}-a y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.030

\(1106\)

12834

\begin{align*} \left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.037

\(1107\)

12837

\begin{align*} y^{\prime \prime }-6 y^{2}-x&=0 \\ \end{align*}

[[_Painleve, ‘1st‘]]

0.227

\(1108\)

12839

\begin{align*} y^{\prime \prime }+a y^{2}+b x +c&=0 \\ \end{align*}

[NONE]

0.239

\(1109\)

12840

\begin{align*} y^{\prime \prime }-2 y^{3}-y x +a&=0 \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.243

\(1110\)

12842

\begin{align*} y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b&=0 \\ \end{align*}

[NONE]

0.263

\(1111\)

12843

\begin{align*} y^{\prime \prime }+d +b x y+c y+a y^{3}&=0 \\ \end{align*}

[NONE]

0.276

\(1112\)

12845

\begin{align*} y^{\prime \prime }+a \,x^{r} y^{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.247

\(1113\)

12847

\begin{align*} y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}}&=0 \\ \end{align*}

[NONE]

0.648

\(1114\)

12849

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

\(1115\)

12850

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.625

\(1116\)

12852

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right )&=0 \\ \end{align*}

[NONE]

0.930

\(1117\)

12853

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right )&=0 \\ \end{align*}

[NONE]

0.729

\(1118\)

12854

\begin{align*} y^{\prime \prime }&=\frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.810

\(1119\)

12855

\begin{align*} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.436

\(1120\)

12856

\begin{align*} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

99.761

\(1121\)

12857

\begin{align*} y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

86.986

\(1122\)

12858

\begin{align*} y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.622

\(1123\)

12859

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n}&=0 \\ \end{align*}

[NONE]

0.337

\(1124\)

12860

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.835

\(1125\)

12861

\begin{align*} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.932

\(1126\)

12863

\begin{align*} y^{\prime \prime }+y y^{\prime }-y^{3}+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

26.560

\(1127\)

12864

\begin{align*} y^{\prime \prime }+\left (3 a +y\right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

17.812

\(1128\)

12865

\begin{align*} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )&=0 \\ \end{align*}

[NONE]

0.546

\(1129\)

12866

\begin{align*} y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.501

\(1130\)

12867

\begin{align*} y^{\prime \prime }-3 y y^{\prime }-3 a y^{2}-4 a^{2} y-b&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19.123

\(1131\)

12868

\begin{align*} y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.501

\(1132\)

12872

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.966

\(1133\)

12874

\begin{align*} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.589

\(1134\)

12877

\begin{align*} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{v}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.495

\(1135\)

12878

\begin{align*} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

\(1136\)

12881

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.589

\(1137\)

12885

\begin{align*} y^{\prime \prime }&=2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.631

\(1138\)

12888

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-x y^{n}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

\(1139\)

12889

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+a \,x^{v} y^{n}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.385

\(1140\)

12890

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+x \,{\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

\(1141\)

12891

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.387

\(1142\)

12892

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.572

\(1143\)

12894

\begin{align*} y^{\prime \prime } x -x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.448

\(1144\)

12895

\begin{align*} y^{\prime \prime } x +a \left (-y+y^{\prime } x \right )^{2}-b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.459

\(1145\)

12897

\begin{align*} x^{2} y^{\prime \prime }&=a \left (y^{n}-y\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

\(1146\)

12898

\begin{align*} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

\(1147\)

12900

\begin{align*} x^{2} y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}-b \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.527

\(1148\)

12901

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

\(1149\)

12902

\begin{align*} x^{2} y^{\prime \prime }-\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.888

\(1150\)

12904

\begin{align*} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.452

\(1151\)

12905

\begin{align*} 2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.342

\(1152\)

12906

\begin{align*} 24+12 y x +x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.773

\(1153\)

12907

\begin{align*} x^{3} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.572

\(1154\)

12908

\begin{align*} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 y x \right ) y^{\prime }+b +x y \left (a +3 y x -2 y^{2} x^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.940

\(1155\)

12909

\begin{align*} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b&=0 \\ \end{align*}

[NONE]

2.459

\(1156\)

12910

\begin{align*} x^{4} y^{\prime \prime }+a^{2} y^{n}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.376

\(1157\)

12911

\begin{align*} x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.594

\(1158\)

12912

\begin{align*} x^{4} y^{\prime \prime }-x^{2} y^{\prime } \left (x +y^{\prime }\right )+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.622

\(1159\)

12913

\begin{align*} \left (-y+y^{\prime } x \right )^{3}+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.096

\(1160\)

12914

\begin{align*} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.288

\(1161\)

12915

\begin{align*} \left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right )&=0 \\ \end{align*}

[NONE]

43.652

\(1162\)

12917

\begin{align*} y y^{\prime \prime }-a x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.220

\(1163\)

12918

\begin{align*} y y^{\prime \prime }-a \,x^{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.271

\(1164\)

12920

\begin{align*} y y^{\prime \prime }+y^{2}-a x -b&=0 \\ \end{align*}

[NONE]

0.277

\(1165\)

12924

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right )&=0 \\ \end{align*}

[NONE]

0.513

\(1166\)

12926

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-y f^{\prime }\left (x \right )-y^{3}&=0 \\ \end{align*}

[NONE]

0.625

\(1167\)

12927

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-y f^{\prime \prime }\left (x \right )+f \left (x \right ) y^{3}-y^{4}&=0 \\ \end{align*}

[NONE]

0.477

\(1168\)

12929

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+y^{3} b&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.354

\(1169\)

12930

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-\left (a y-1\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

29.186

\(1170\)

12931

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y-1\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

91.280

\(1171\)

12932

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

3.588

\(1172\)

12933

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.685

\(1173\)

12934

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+f \left (x \right ) y^{2}\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.861

\(1174\)

12939

\begin{align*} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{1-a}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

360.454

\(1175\)

12941

\begin{align*} y y^{\prime \prime }-\frac {\left (-1+a \right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a}&=0 \\ \end{align*}

[NONE]

1.072

\(1176\)

12942

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.420

\(1177\)

12944

\begin{align*} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.445

\(1178\)

12945

\begin{align*} \left (x -y\right ) y^{\prime \prime }-\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.528

\(1179\)

12946

\begin{align*} \left (x -y\right ) y^{\prime \prime }-h \left (y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.724

\(1180\)

12949

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a&=0 \\ \end{align*}

[NONE]

0.404

\(1181\)

12952

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (x +2 y\right )&=0 \\ \end{align*}

[NONE]

0.332

\(1182\)

12954

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3}&=0 \\ \end{align*}

[NONE]

0.347

\(1183\)

12955

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b x \right ) y^{2}&=0 \\ \end{align*}

[NONE]

0.324

\(1184\)

12957

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4}&=0 \\ \end{align*}

[[_Painleve, ‘4th‘]]

0.454

\(1185\)

12960

\begin{align*} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

\(1186\)

12964

\begin{align*} 3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\ \end{align*}

[NONE]

0.411

\(1187\)

12976

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.761

\(1188\)

12977

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right )&=0 \\ \end{align*}

[[_Painleve, ‘3rd‘]]

0.529

\(1189\)

12978

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+y^{3} b x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.434

\(1190\)

12980

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.444

\(1191\)

12983

\begin{align*} x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.847

\(1192\)

12986

\begin{align*} x^{2} \left (-1+y\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (-1+y\right ) y^{\prime }-2 y \left (-1+y\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.328

\(1193\)

12987

\begin{align*} x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.824

\(1194\)

12988

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.834

\(1195\)

12989

\begin{align*} 2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.530

\(1196\)

12990

\begin{align*} a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.638

\(1197\)

12991

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }-x \left (x +1\right )^{2} {y^{\prime }}^{2}+2 \left (x +1\right )^{2} y y^{\prime }-a \left (2+x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.467

\(1198\)

12992

\begin{align*} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.905

\(1199\)

12994

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.316

\(1200\)

12995

\begin{align*} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

\(1201\)

12998

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.704

\(1202\)

12999

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.726

\(1203\)

13000

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.677

\(1204\)

13001

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+f \left (x \right ) \left (1-y\right ) y y^{\prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.674

\(1205\)

13008

\begin{align*} x y^{2} y^{\prime \prime }-a&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.225

\(1206\)

13009

\begin{align*} \left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.015

\(1207\)

13010

\begin{align*} 2 x^{2} y \left (-1+y\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (-1+y\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (-1+y\right )^{3}+c x y^{2} \left (-1+y\right )+d \,x^{2} y^{2} \left (1+y\right )&=0 \\ \end{align*}

[[_Painleve, ‘5th‘]]

1.469

\(1208\)

13011

\begin{align*} \left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.300

\(1209\)

13014

\begin{align*} 2 y^{3} y^{\prime \prime }+y^{4}-y^{2} a^{2} x -1&=0 \\ \end{align*}

[NONE]

0.237

\(1210\)

13015

\begin{align*} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\ \end{align*}

[NONE]

0.324

\(1211\)

13016

\begin{align*} 2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

721.596

\(1212\)

13020

\begin{align*} \left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+d y&=0 \\ \end{align*}

[NONE]

0.651

\(1213\)

13022

\begin{align*} \sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.967

\(1214\)

13026

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.741

\(1215\)

13027

\begin{align*} \left (-y+y^{\prime } x \right ) y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.408

\(1216\)

13028

\begin{align*} \left (-y+y^{\prime } x \right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.492

\(1217\)

13029

\begin{align*} a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.474

\(1218\)

13030

\begin{align*} \left ({y^{\prime }}^{2}+a \left (-y+y^{\prime } x \right )\right ) y^{\prime \prime }-b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.561

\(1219\)

13031

\begin{align*} \left (a \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x \right ) y^{\prime \prime }-{y^{\prime }}^{2}-1&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.231

\(1220\)

13032

\begin{align*} {y^{\prime \prime }}^{2}-a y-b&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.040

\(1221\)

13034

\begin{align*} 2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[NONE]

0.037

\(1222\)

13035

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.546

\(1223\)

13036

\begin{align*} \left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.904

\(1224\)

13037

\begin{align*} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.882

\(1225\)

13039

\begin{align*} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (-y+y^{\prime } x \right )^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.042

\(1226\)

13042

\begin{align*} y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.026

\(1227\)

13043

\begin{align*} y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.025

\(1228\)

13044

\begin{align*} a y y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.022

\(1229\)

13045

\begin{align*} x^{2} y^{\prime \prime \prime }+y^{\prime \prime } x +\left (2 y x -1\right ) y^{\prime }+y^{2}-f \left (x \right )&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear]]

0.031

\(1230\)

13046

\begin{align*} x^{2} y^{\prime \prime \prime }+x \left (-1+y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.032

\(1231\)

13047

\begin{align*} y^{3} y^{\prime }-y^{\prime } y^{\prime \prime }+y y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.030

\(1232\)

13048

\begin{align*} 15 {y^{\prime }}^{3}-18 y y^{\prime } y^{\prime \prime }+4 y^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.030

\(1233\)

13049

\begin{align*} 40 {y^{\prime }}^{3}-45 y y^{\prime } y^{\prime \prime }+9 y^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.030

\(1234\)

13054

\begin{align*} y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.056

\(1235\)

13056

\begin{align*} 9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.073

\(1236\)

13058

\begin{align*} y^{\prime \prime \prime }&=f \left (y\right ) \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.016

\(1237\)

13077

\begin{align*} x^{\prime }&=x f \left (t \right )+y g \left (t \right ) \\ y^{\prime }&=-x g \left (t \right )+y f \left (t \right ) \\ \end{align*}

system_of_ODEs

0.025

\(1238\)

13078

\begin{align*} x^{\prime }+\left (a x+b y\right ) f \left (t \right )&=g \left (t \right ) \\ y^{\prime }+\left (c x+d y\right ) f \left (t \right )&=h \left (t \right ) \\ \end{align*}

system_of_ODEs

0.029

\(1239\)

13079

\begin{align*} x^{\prime }&=x \cos \left (t \right ) \\ y^{\prime }&=x \,{\mathrm e}^{-\sin \left (t \right )} \\ \end{align*}

system_of_ODEs

0.026

\(1240\)

13080

\begin{align*} t x^{\prime }+y&=0 \\ y^{\prime } t +x&=0 \\ \end{align*}

system_of_ODEs

0.022

\(1241\)

13081

\begin{align*} t x^{\prime }+2 x&=t \\ y^{\prime } t -\left (t +2\right ) x-t y&=-t \\ \end{align*}

system_of_ODEs

0.028

\(1242\)

13082

\begin{align*} t x^{\prime }+2 x-2 y&=t \\ y^{\prime } t +x+5 y&=t^{2} \\ \end{align*}

system_of_ODEs

0.026

\(1243\)

13083

\begin{align*} t^{2} \left (1-\sin \left (t \right )\right ) x^{\prime }&=t \left (1-2 \sin \left (t \right )\right ) x+t^{2} y \\ t^{2} \left (1-\sin \left (t \right )\right ) y^{\prime }&=\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x+t \left (1-t \cos \left (t \right )\right ) y \\ \end{align*}

system_of_ODEs

0.040

\(1244\)

13084

\begin{align*} x^{\prime }+y^{\prime }+y&=f \left (t \right ) \\ x^{\prime \prime }+y^{\prime \prime }+y^{\prime }+x+y&=g \left (t \right ) \\ \end{align*}

system_of_ODEs

0.027

\(1245\)

13085

\begin{align*} 2 x^{\prime }+y^{\prime }-3 x&=0 \\ x^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.028

\(1246\)

13086

\begin{align*} x^{\prime }+x-y^{\prime }&=2 t \\ x^{\prime \prime }+y^{\prime }-9 x+3 y&=\sin \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.031

\(1247\)

13087

\begin{align*} x^{\prime }-x+2 y&=0 \\ x^{\prime \prime }-2 y^{\prime }&=2 t -\cos \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.026

\(1248\)

13088

\begin{align*} t x^{\prime }-y^{\prime } t -2 y&=0 \\ t x^{\prime \prime }+2 x^{\prime }+t x&=0 \\ \end{align*}

system_of_ODEs

0.026

\(1249\)

13089

\begin{align*} x^{\prime \prime }+a y&=0 \\ y^{\prime \prime }-a^{2} y&=0 \\ \end{align*}

system_of_ODEs

0.021

\(1250\)

13090

\begin{align*} x^{\prime \prime }&=a x+b y \\ y^{\prime \prime }&=c x+d y \\ \end{align*}

system_of_ODEs

0.022

\(1251\)

13091

\begin{align*} x^{\prime \prime }&=a_{1} x+b_{1} y+c_{1} \\ y^{\prime \prime }&=a_{2} x+b_{2} y+c_{2} \\ \end{align*}

system_of_ODEs

0.021

\(1252\)

13092

\begin{align*} x^{\prime \prime }+x+y&=-5 \\ y^{\prime \prime }-4 x-3 y&=-3 \\ \end{align*}

system_of_ODEs

0.020

\(1253\)

13093

\begin{align*} x^{\prime \prime }&=\left (3 \cos \left (a t +b \right )^{2}-1\right ) c^{2} x+\frac {3 c^{2} y \sin \left (2 a t b \right )}{2} \\ y^{\prime \prime }&=\left (3 \sin \left (a t +b \right )^{2}-1\right ) c^{2} y+\frac {3 c^{2} x \sin \left (2 a t b \right )}{2} \\ \end{align*}

system_of_ODEs

0.030

\(1254\)

13094

\begin{align*} x^{\prime \prime }+6 x+7 y&=0 \\ y^{\prime \prime }+3 x+2 y&=2 t \\ \end{align*}

system_of_ODEs

0.023

\(1255\)

13095

\begin{align*} x^{\prime \prime }-a y^{\prime }+b x&=0 \\ y^{\prime \prime }+a x^{\prime }+b y&=0 \\ \end{align*}

system_of_ODEs

0.027

\(1256\)

13096

\begin{align*} a_{1} x^{\prime \prime }+b_{1} x^{\prime }+c_{1} x-A y^{\prime }&=B \,{\mathrm e}^{i \omega t} \\ a_{2} y^{\prime \prime }+b_{2} y^{\prime }+c_{2} y+A x^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.041

\(1257\)

13097

\begin{align*} x^{\prime \prime }+a \left (x^{\prime }-y^{\prime }\right )+b_{1} x&=c_{1} {\mathrm e}^{i \omega t} \\ y^{\prime \prime }+a \left (y^{\prime }-x^{\prime }\right )+b_{2} y&=c_{2} {\mathrm e}^{i \omega t} \\ \end{align*}

system_of_ODEs

0.040

\(1258\)

13098

\begin{align*} \operatorname {a11} x^{\prime \prime }+\operatorname {b11} x^{\prime }+\operatorname {c11} x+\operatorname {a12} y^{\prime \prime }+\operatorname {b12} y^{\prime }+\operatorname {c12} y&=0 \\ \operatorname {a21} x^{\prime \prime }+\operatorname {b21} x^{\prime }+\operatorname {c21} x+\operatorname {a22} y^{\prime \prime }+\operatorname {b22} y^{\prime }+\operatorname {c22} y&=0 \\ \end{align*}

system_of_ODEs

0.040

\(1259\)

13099

\begin{align*} x^{\prime \prime }-2 x^{\prime }-y^{\prime }+y&=0 \\ y^{\prime \prime \prime }-y^{\prime \prime }+2 x^{\prime }-x&=t \\ \end{align*}

system_of_ODEs

0.032

\(1260\)

13100

\begin{align*} x^{\prime \prime }+y^{\prime \prime }+y^{\prime }&=\sinh \left (2 t \right ) \\ 2 x^{\prime \prime }+y^{\prime \prime }&=2 t \\ \end{align*}

system_of_ODEs

0.032

\(1261\)

13101

\begin{align*} x^{\prime \prime }-x^{\prime }+y^{\prime }&=0 \\ x^{\prime \prime }+y^{\prime \prime }-x&=0 \\ \end{align*}

system_of_ODEs

0.027

\(1262\)

13111

\begin{align*} x^{\prime }&=a x+g y+\beta z \\ y^{\prime }&=g x+b y+\alpha z \\ z^{\prime }&=\beta x+\alpha y+c z \\ \end{align*}

system_of_ODEs

165.232

\(1263\)

13112

\begin{align*} t x^{\prime }&=2 x-t \\ t^{3} y^{\prime }&=-x+t^{2} y+t \\ t^{4} z^{\prime }&=-x-t^{2} y+t^{3} z+t \\ \end{align*}

system_of_ODEs

0.042

\(1264\)

13113

\begin{align*} a t x^{\prime }&=b c \left (y-z\right ) \\ b t y^{\prime }&=c a \left (z-x\right ) \\ c t z^{\prime }&=a b \left (x-y\right ) \\ \end{align*}

system_of_ODEs

0.040

\(1265\)

13114

\begin{align*} x_{1}^{\prime }&=a x_{2}+b x_{3} \cos \left (c t \right )+b x_{4} \sin \left (c t \right ) \\ x_{2}^{\prime }&=-a x_{1}+b x_{3} \sin \left (c t \right )-b x_{4} \cos \left (c t \right ) \\ x_{3}^{\prime }&=-b x_{1} \cos \left (c t \right )-b x_{2} \sin \left (c t \right )+a x_{4} \\ x_{4}^{\prime }&=-b x_{1} \sin \left (c t \right )+b x_{2} \cos \left (c t \right )-a x_{3} \\ \end{align*}

system_of_ODEs

0.063

\(1266\)

13115

\begin{align*} x^{\prime }&=-x \left (x+y\right ) \\ y^{\prime }&=y \left (x+y\right ) \\ \end{align*}

system_of_ODEs

0.024

\(1267\)

13116

\begin{align*} x^{\prime }&=\left (a y+b \right ) x \\ y^{\prime }&=\left (c x+d \right ) y \\ \end{align*}

system_of_ODEs

0.025

\(1268\)

13117

\begin{align*} x^{\prime }&=x \left (a \left (p x+q y\right )+\alpha \right ) \\ y^{\prime }&=y \left (\beta +b \left (p x+q y\right )\right ) \\ \end{align*}

system_of_ODEs

0.028

\(1269\)

13118

\begin{align*} x^{\prime }&=h \left (a -x\right ) \left (c -x-y\right ) \\ y^{\prime }&=k \left (b -y\right ) \left (c -x-y\right ) \\ \end{align*}

system_of_ODEs

0.028

\(1270\)

13119

\begin{align*} x^{\prime }&=y^{2}-\cos \left (x\right ) \\ y^{\prime }&=-y \sin \left (x\right ) \\ \end{align*}

system_of_ODEs

0.025

\(1271\)

13120

\begin{align*} x^{\prime }&=-x \,y^{2}+x+y \\ y^{\prime }&=y \,x^{2}-x-y \\ \end{align*}

system_of_ODEs

0.027

\(1272\)

13121

\begin{align*} x^{\prime }&=x+y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }&=-x+y-y \left (x^{2}+y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.029

\(1273\)

13122

\begin{align*} x^{\prime }&=-y+x \left (x^{2}+y^{2}-1\right ) \\ y^{\prime }&=x+y \left (x^{2}+y^{2}-1\right ) \\ \end{align*}

system_of_ODEs

0.028

\(1274\)

13123

\begin{align*} \left (t^{2}+1\right ) x^{\prime }&=-t x+y \\ \left (t^{2}+1\right ) y^{\prime }&=-x-t y \\ \end{align*}

system_of_ODEs

0.029

\(1275\)

13124

\begin{align*} \left (x^{2}+y^{2}-t^{2}\right ) x^{\prime }&=-2 t x \\ \left (x^{2}+y^{2}-t^{2}\right ) y^{\prime }&=-2 t y \\ \end{align*}

system_of_ODEs

0.033

\(1276\)

13125

\begin{align*} {x^{\prime }}^{2}+t x^{\prime }+a y^{\prime }-x&=0 \\ x^{\prime } y^{\prime }+y^{\prime } t -y&=0 \\ \end{align*}

system_of_ODEs

0.040

\(1277\)

13126

\begin{align*} x&=t x^{\prime }+f \left (x^{\prime }, y^{\prime }\right ) \\ y&=y^{\prime } t +g \left (x^{\prime }, y^{\prime }\right ) \\ \end{align*}

system_of_ODEs

0.047

\(1278\)

13127

\begin{align*} x^{\prime \prime }&=a \,{\mathrm e}^{2 x}-{\mathrm e}^{-x}+{\mathrm e}^{-2 x} \cos \left (y\right )^{2} \\ y^{\prime \prime }&={\mathrm e}^{-2 x} \sin \left (y\right ) \cos \left (y\right )-\frac {\sin \left (y\right )}{\cos \left (y\right )^{3}} \\ \end{align*}

system_of_ODEs

0.033

\(1279\)

13128

\begin{align*} x^{\prime \prime }&=\frac {k x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ y^{\prime \prime }&=\frac {k y}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ \end{align*}

system_of_ODEs

0.023

\(1280\)

13129

\begin{align*} x^{\prime }&=y-z \\ y^{\prime }&=x^{2}+y \\ z^{\prime }&=x^{2}+z \\ \end{align*}

system_of_ODEs

0.028

\(1281\)

13130

\begin{align*} a x^{\prime }&=\left (b -c \right ) y z \\ b y^{\prime }&=\left (c -a \right ) z x \\ c z^{\prime }&=\left (a -b \right ) x y \\ \end{align*}

system_of_ODEs

0.039

\(1282\)

13131

\begin{align*} x^{\prime }&=x \left (y-z\right ) \\ y^{\prime }&=y \left (z-x\right ) \\ z^{\prime }&=z \left (x-y\right ) \\ \end{align*}

system_of_ODEs

0.031

\(1283\)

13132

\begin{align*} x^{\prime }+y^{\prime }&=x y \\ y^{\prime }+z^{\prime }&=y z \\ x^{\prime }+z^{\prime }&=x z \\ \end{align*}

system_of_ODEs

0.041

\(1284\)

13133

\begin{align*} x^{\prime }&=\frac {x^{2}}{2}-\frac {y}{24} \\ y^{\prime }&=2 x y-3 z \\ z^{\prime }&=3 x z-\frac {y^{2}}{6} \\ \end{align*}

system_of_ODEs

0.032

\(1285\)

13134

\begin{align*} x^{\prime }&=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }&=y \left (z^{2}-x^{2}\right ) \\ z^{\prime }&=z \left (x^{2}-y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.031

\(1286\)

13135

\begin{align*} x^{\prime }&=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }&=-y \left (z^{2}+x^{2}\right ) \\ z^{\prime }&=z \left (x^{2}+y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.036

\(1287\)

13136

\begin{align*} x^{\prime }&=-x \,y^{2}+x+y \\ y^{\prime }&=y \,x^{2}-x-y \\ z^{\prime }&=y^{2}-x^{2} \\ \end{align*}

system_of_ODEs

0.031

\(1288\)

13137

\begin{align*} \left (x-y\right ) \left (x-z\right ) x^{\prime }&=f \left (t \right ) \\ \left (-x+y\right ) \left (y-z\right ) y^{\prime }&=f \left (t \right ) \\ \left (z-x\right ) \left (z-y\right ) z^{\prime }&=f \left (t \right ) \\ \end{align*}

system_of_ODEs

0.041

\(1289\)

13253

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{2}+b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \\ \end{align*}

[_rational, _Riccati]

30.799

\(1290\)

13256

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \\ \end{align*}

[_rational, _Riccati]

25.765

\(1291\)

13258

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\lambda \left (1-2 y x +y^{2}\right )&=0 \\ \end{align*}

[_rational, _Riccati]

1.505

\(1292\)

13260

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma &=0 \\ \end{align*}

[_rational, _Riccati]

538.798

\(1293\)

13269

\begin{align*} x^{3} y^{\prime }&=a \,x^{3} y^{2}+x \left (b x +c \right ) y+x \alpha +\beta \\ \end{align*}

[_rational, _Riccati]

24.248

\(1294\)

13283

\begin{align*} y^{\prime }&=\sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

4.749

\(1295\)

13287

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \\ \end{align*}

[_Riccati]

40.002

\(1296\)

13295

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\mu x} y^{2}+a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x} y-b \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

29.698

\(1297\)

13309

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

5.882

\(1298\)

13311

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \\ \end{align*}

[_Riccati]

11.288

\(1299\)

13333

\begin{align*} y^{\prime }&=a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \\ \end{align*}

[_Riccati]

36.181

\(1300\)

13336

\begin{align*} y^{\prime }&=y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

5.969

\(1301\)

13337

\begin{align*} y^{\prime }&=y^{2}+3 a \lambda -\lambda ^{2}-a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

72.067

\(1302\)

13340

\begin{align*} y^{\prime }&=y^{2}+a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

5.894

\(1303\)

13341

\begin{align*} y^{\prime }&=y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

42.036

\(1304\)

13389

\begin{align*} y^{\prime }&=y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

3.898

\(1305\)

13390

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

102.448

\(1306\)

13397

\begin{align*} y^{\prime }&=a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

113.246

\(1307\)

13400

\begin{align*} y^{\prime }&=y^{2}+a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

4.278

\(1308\)

13401

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

49.026

\(1309\)

13402

\begin{align*} y^{\prime }&=y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2} \\ \end{align*}

[_Riccati]

43.068

\(1310\)

13406

\begin{align*} y^{\prime }&=a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

127.190

\(1311\)

13410

\begin{align*} y^{\prime }&=a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n} \\ \end{align*}

[_Riccati]

41.365

\(1312\)

13417

\begin{align*} y^{\prime }&=y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \\ \end{align*}

[_Riccati]

49.560

\(1313\)

13425

\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

53.438

\(1314\)

13433

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

58.923

\(1315\)

13440

\begin{align*} y^{\prime }&=\lambda \arctan \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

40.563

\(1316\)

13447

\begin{align*} y^{\prime }&=\lambda \operatorname {arccot}\left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

78.325

\(1317\)

13469

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

118.092

\(1318\)

13470

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

121.240

\(1319\)

13471

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

31.015

\(1320\)

13472

\begin{align*} y^{\prime } x&=f \left (x \right ) y^{2}+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \\ \end{align*}

[_Riccati]

17.478

\(1321\)

13473

\begin{align*} y^{\prime } x&=f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

20.625

\(1322\)

13474

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \\ \end{align*}

[_Riccati]

24.651

\(1323\)

13477

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

33.429

\(1324\)

13478

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

35.549

\(1325\)

13479

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

114.484

\(1326\)

13480

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

115.431

\(1327\)

13485

\begin{align*} y^{\prime }&=\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \\ \end{align*}

[_Riccati]

6.681

\(1328\)

13486

\begin{align*} f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right )&=0 \\ \end{align*}

[_Riccati]

45.162

\(1329\)

13490

\begin{align*} y^{\prime }&=y^{2}+a^{2} f \left (a x +b \right ) \\ \end{align*}

[_Riccati]

3.867

\(1330\)

13491

\begin{align*} y^{\prime }&=y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \\ \end{align*}

[_Riccati]

4.782

\(1331\)

13492

\begin{align*} x^{2} y^{\prime }&=x^{4} f \left (x \right ) y^{2}+1 \\ \end{align*}

[_Riccati]

5.761

\(1332\)

13493

\begin{align*} x^{2} y^{\prime }&=y^{2} x^{4}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \\ \end{align*}

[_Riccati]

48.125

\(1333\)

13494

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+g \left (x \right ) y+h \left (x \right ) \\ \end{align*}

[_Riccati]

9.795

\(1334\)

13495

\begin{align*} x^{2} y^{\prime }&=y^{2} x^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \\ \end{align*}

[_Riccati]

16.620

\(1335\)

13498

\begin{align*} y y^{\prime }-y&=-\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

140.005

\(1336\)

13499

\begin{align*} y y^{\prime }-y&=2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

77.933

\(1337\)

13500

\begin{align*} y y^{\prime }-y&=A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

28.949

\(1338\)

13501

\begin{align*} y y^{\prime }-y&=\frac {A}{x}-\frac {A^{2}}{x^{3}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

24.958

\(1339\)

13502

\begin{align*} y y^{\prime }-y&=A +B \,{\mathrm e}^{-\frac {2 x}{A}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

27.368

\(1340\)

13503

\begin{align*} y y^{\prime }-y&=A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

31.161

\(1341\)

13504

\begin{align*} y y^{\prime }-y&=-\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

92.159

\(1342\)

13505

\begin{align*} y y^{\prime }-y&=\frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.944

\(1343\)

13506

\begin{align*} y y^{\prime }-y&=\frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

43.268

\(1344\)

13507

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

89.396

\(1345\)

13508

\begin{align*} y y^{\prime }-y&=\frac {A}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

23.589

\(1346\)

13509

\begin{align*} y y^{\prime }-y&=-\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

127.716

\(1347\)

13510

\begin{align*} y y^{\prime }-y&=\frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

45.800

\(1348\)

13512

\begin{align*} y y^{\prime }-y&=\frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

111.288

\(1349\)

13513

\begin{align*} y y^{\prime }-y&=-\frac {4 x}{25}+\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

75.835

\(1350\)

13514

\begin{align*} y y^{\prime }-y&=-\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

101.915

\(1351\)

13515

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

133.770

\(1352\)

13516

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

146.654

\(1353\)

13517

\begin{align*} y y^{\prime }-y&=-\frac {2 x}{9}+\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

48.046

\(1354\)

13518

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

133.897

\(1355\)

13519

\begin{align*} y y^{\prime }-y&=-\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

125.942

\(1356\)

13520

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

85.275

\(1357\)

13521

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

137.419

\(1358\)

13522

\begin{align*} y y^{\prime }-y&=\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

53.495

\(1359\)

13524

\begin{align*} y y^{\prime }-y&=A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (n +1\right ) \left (n +3\right ) A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

285.062

\(1360\)

13525

\begin{align*} y y^{\prime }-y&=A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (2 n +3\right ) A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

206.632

\(1361\)

13526

\begin{align*} y y^{\prime }-y&=A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

114.529

\(1362\)

13527

\begin{align*} y y^{\prime }-y&=2 A^{2}-A \sqrt {x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

56.460

\(1363\)

13528

\begin{align*} y y^{\prime }-y&=-\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

92.880

\(1364\)

13529

\begin{align*} y y^{\prime }-y&=-\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

105.031

\(1365\)

13530

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

72.380

\(1366\)

13531

\begin{align*} y y^{\prime }-y&=\frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

110.289

\(1367\)

13532

\begin{align*} y y^{\prime }-y&=A \,x^{2}-\frac {9}{625 A} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

33.029

\(1368\)

13533

\begin{align*} y y^{\prime }-y&=-\frac {6}{25} x -A \,x^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

50.898

\(1369\)

13534

\begin{align*} y y^{\prime }-y&=\frac {6}{25} x -A \,x^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

51.166

\(1370\)

13536

\begin{align*} y y^{\prime }-y&=\frac {63 x}{4}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

98.519

\(1371\)

13537

\begin{align*} y y^{\prime }-y&=2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

114.001

\(1372\)

13538

\begin{align*} y y^{\prime }-y&=2 x +2 A \left (-10 \sqrt {x}+19 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

115.034

\(1373\)

13539

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

138.899

\(1374\)

13540

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+A \sqrt {x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

75.151

\(1375\)

13542

\begin{align*} y y^{\prime }-y&=20 x +\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

46.137

\(1376\)

13544

\begin{align*} y y^{\prime }-y&=-\frac {10 x}{49}+\frac {2 A \left (4 \sqrt {x}+61 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

119.269

\(1377\)

13545

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {2 A \left (\sqrt {x}+166 A +\frac {55 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

155.015

\(1378\)

13546

\begin{align*} y y^{\prime }-y&=-\frac {4 x}{25}+\frac {A \left (7 \sqrt {x}+49 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{50} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

136.362

\(1379\)

13547

\begin{align*} y y^{\prime }-y&=\frac {15 x}{4}+\frac {6 A}{x^{{1}/{3}}}-\frac {3 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

78.111

\(1380\)

13548

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{1}/{3}}}+\frac {B}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

124.393

\(1381\)

13549

\begin{align*} y y^{\prime }-y&=\frac {k}{\sqrt {A \,x^{2}+B x +c}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

79.433

\(1382\)

13550

\begin{align*} y y^{\prime }-y&=-\frac {6 x}{25}+\frac {4 B^{2} \left (\left (2-A \right ) x^{{1}/{3}}-\frac {3 B \left (2 A +1\right )}{2}+\frac {B^{2} \left (1-3 A \right )}{x^{{1}/{3}}}-\frac {A \,B^{3}}{x^{{2}/{3}}}\right )}{75} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

626.570

\(1383\)

13551

\begin{align*} y y^{\prime }-y&=a x +b \,x^{m} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

58.210

\(1384\)

13552

\begin{align*} y y^{\prime }-y&=a^{2} \lambda \,{\mathrm e}^{2 \lambda x}-a \left (b \lambda +1\right ) {\mathrm e}^{\lambda x}+b \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

63.132

\(1385\)

13553

\begin{align*} y y^{\prime }-y&=a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

10.718

\(1386\)

13554

\begin{align*} y y^{\prime }&=\left (a x +b \right ) y+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15.897

\(1387\)

13555

\begin{align*} y y^{\prime }&=\frac {y}{\left (a x +b \right )^{2}}+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19.542

\(1388\)

13556

\begin{align*} y y^{\prime }&=\left (a -\frac {1}{a x}\right ) y+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

21.882

\(1389\)

13558

\begin{align*} y y^{\prime }&=\frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

59.869

\(1390\)

13559

\begin{align*} y y^{\prime }&=\left (\frac {a}{x^{{2}/{3}}}-\frac {2}{3 a \,x^{{1}/{3}}}\right ) y+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

74.824

\(1391\)

13560

\begin{align*} y y^{\prime }&=a \,{\mathrm e}^{\lambda x} y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

12.006

\(1392\)

13561

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{-\lambda x}\right ) y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

20.058

\(1393\)

13562

\begin{align*} y y^{\prime }&=a y \cosh \left (x \right )+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

69.177

\(1394\)

13563

\begin{align*} y y^{\prime }&=a \cos \left (\lambda x \right ) y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

23.344

\(1395\)

13564

\begin{align*} y y^{\prime }&=a \sin \left (\lambda x \right ) y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

27.040

\(1396\)

13565

\begin{align*} y y^{\prime }&=\left (a x +3 b \right ) y+c \,x^{3}-b \,x^{2} a -2 b^{2} x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

45.551

\(1397\)

13567

\begin{align*} 2 y y^{\prime }&=\left (7 a x +5 b \right ) y-3 a^{2} x^{3}-2 c \,x^{2}-3 b^{2} x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

45.455

\(1398\)

13568

\begin{align*} y y^{\prime }&=\left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

55.187

\(1399\)

13569

\begin{align*} y y^{\prime }+x \left (a \,x^{2}+b \right ) y+x&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.271

\(1400\)

13570

\begin{align*} y y^{\prime }+a \left (1-\frac {1}{x}\right ) y&=a^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.177

\(1401\)

13571

\begin{align*} y y^{\prime }-a \left (1-\frac {b}{x}\right ) y&=a^{2} b \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

21.762

\(1402\)

13572

\begin{align*} y y^{\prime }&=x^{n -1} \left (\left (2 n +1\right ) x +a n \right ) y-n \,x^{2 n} \left (a +x \right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

112.969

\(1403\)

13573

\begin{align*} y y^{\prime }&=a \left (-n b +x \right ) x^{n -1} y+c \left (x^{2}-\left (2 n +1\right ) b x +n \left (n +1\right ) b^{2}\right ) x^{2 n -1} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

238.775

\(1404\)

13574

\begin{align*} y y^{\prime }-\frac {a \left (x \left (m -1\right )+1\right ) y}{x}&=\frac {a^{2} \left (x m +1\right ) \left (x -1\right )}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

28.741

\(1405\)

13575

\begin{align*} y y^{\prime }-a \left (1-\frac {b}{\sqrt {x}}\right ) y&=\frac {a^{2} b}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55.093

\(1406\)

13577

\begin{align*} y y^{\prime }+\frac {a \left (6 x -1\right ) y}{2 x}&=-\frac {a^{2} \left (x -1\right ) \left (4 x -1\right )}{2 x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

24.874

\(1407\)

13578

\begin{align*} y y^{\prime }-\frac {a \left (1+\frac {2 b}{x^{2}}\right ) y}{2}&=\frac {a^{2} \left (3 x +\frac {4 b}{x}\right )}{16} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

41.035

\(1408\)

13579

\begin{align*} y y^{\prime }+\frac {a \left (13 x -18\right ) y}{15 x^{{7}/{5}}}&=-\frac {4 a^{2} \left (x -1\right ) \left (x -6\right )}{15 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

83.901

\(1409\)

13580

\begin{align*} y y^{\prime }+\frac {a \left (5 x +1\right ) y}{2 \sqrt {x}}&=a^{2} \left (-x^{2}+1\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

91.809

\(1410\)

13581

\begin{align*} y y^{\prime }+\frac {a \left (7 x -12\right ) y}{10 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (x -16\right )}{10 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

79.707

\(1411\)

13582

\begin{align*} y y^{\prime }+\frac {3 a \left (13 x -8\right ) y}{20 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (27 x -32\right )}{20 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

84.536

\(1412\)

13583

\begin{align*} y y^{\prime }-\frac {a \left (x +1\right ) y}{2 x^{{7}/{4}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +5\right )}{4 x^{{5}/{2}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

109.665

\(1413\)

13584

\begin{align*} y y^{\prime }-\frac {a \left (4 x +3\right ) y}{14 x^{{8}/{7}}}&=-\frac {a^{2} \left (x -1\right ) \left (16 x +5\right )}{14 x^{{9}/{7}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

106.616

\(1414\)

13585

\begin{align*} y y^{\prime }+\frac {a \left (13 x -3\right ) y}{6 x^{{2}/{3}}}&=-\frac {a^{2} \left (x -1\right ) \left (5 x -1\right )}{6 x^{{1}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191.432

\(1415\)

13586

\begin{align*} y y^{\prime }-\frac {a \left (5 x -4\right ) y}{x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (3 x -1\right )}{x^{7}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55.449

\(1416\)

13587

\begin{align*} y y^{\prime }-\frac {2 a \left (3 x -10\right ) y}{5 x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (8 x -5\right )}{5 x^{7}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55.194

\(1417\)

13588

\begin{align*} y y^{\prime }+\frac {a \left (39 x -4\right ) y}{42 x^{{9}/{7}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -1\right )}{42 x^{{11}/{7}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

130.854

\(1418\)

13589

\begin{align*} y y^{\prime }+\frac {a \left (x -2\right ) y}{x}&=\frac {2 a^{2} \left (x -1\right )}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

30.679

\(1419\)

13590

\begin{align*} y y^{\prime }+\frac {a \left (3 x -2\right ) y}{x}&=-\frac {2 a^{2} \left (x -1\right )^{2}}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.316

\(1420\)

13591

\begin{align*} y y^{\prime }+\frac {a \left (1-\frac {b}{x^{2}}\right ) y}{x}&=\frac {a^{2} b}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.384

\(1421\)

13592

\begin{align*} y y^{\prime }-\frac {a \left (3 x -4\right ) y}{4 x^{{5}/{2}}}&=\frac {a^{2} \left (x -1\right ) \left (2+x \right )}{4 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

94.750

\(1422\)

13593

\begin{align*} y y^{\prime }+\frac {a \left (33 x +2\right ) y}{30 x^{{6}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -4\right )}{30 x^{{7}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

94.047

\(1423\)

13594

\begin{align*} y y^{\prime }-\frac {a \left (x -8\right ) y}{8 x^{{5}/{2}}}&=-\frac {a^{2} \left (x -1\right ) \left (3 x -4\right )}{8 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

94.151

\(1424\)

13595

\begin{align*} y y^{\prime }-\frac {a \left (6 x -13\right ) y}{13 x^{{5}/{2}}}&=-\frac {a^{2} \left (x -1\right ) \left (x -13\right )}{26 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

97.091

\(1425\)

13596

\begin{align*} y y^{\prime }-\frac {2 a \left (3 x +2\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (8 x +1\right )}{5 x^{{11}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

93.090

\(1426\)

13597

\begin{align*} y y^{\prime }-\frac {6 a \left (4 x +1\right ) y}{5 x^{{7}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (27 x +8\right )}{5 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

95.858

\(1427\)

13598

\begin{align*} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{3}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

83.000

\(1428\)

13599

\begin{align*} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{11}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

100.345

\(1429\)

13600

\begin{align*} y y^{\prime }-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}}&=\frac {a^{2} \left (x -1\right ) \left (1+3 x \right )}{2 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

97.990

\(1430\)

13601

\begin{align*} y y^{\prime }+\frac {a \left (x -6\right ) y}{5 x^{{7}/{5}}}&=\frac {2 a^{2} \left (x -1\right ) \left (x +4\right )}{5 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

86.568

\(1431\)

13602

\begin{align*} y y^{\prime }-\frac {3 a y}{x^{{7}/{4}}}&=\frac {a^{2} \left (x -1\right ) \left (x -9\right )}{4 x^{{5}/{2}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

134.566

\(1432\)

13603

\begin{align*} y y^{\prime }-\frac {a \left (\left (1+k \right ) x -1\right ) y}{x^{2}}&=\frac {a^{2} \left (1+k \right ) \left (x -1\right )}{x^{2}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

73.225

\(1433\)

13604

\begin{align*} y y^{\prime }-\left (\left (2 n -1\right ) x -a n \right ) x^{-1-n} y&=n \left (x -a \right ) x^{-2 n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

183.363

\(1434\)

13605

\begin{align*} y y^{\prime }-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y&=-\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

201.517

\(1435\)

13606

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

67.855

\(1436\)

13607

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{\lambda x}+b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

170.944

\(1437\)

13608

\begin{align*} y y^{\prime }&={\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

228.966

\(1438\)

13609

\begin{align*} y y^{\prime }&={\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

128.497

\(1439\)

13610

\begin{align*} y y^{\prime }+a \left (2 b x +1\right ) {\mathrm e}^{b x} y&=-a^{2} b \,x^{2} {\mathrm e}^{2 b x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

23.566

\(1440\)

13611

\begin{align*} y y^{\prime }-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y&=-a^{2} n \left (n +1\right ) \left (x n +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

85.739

\(1441\)

13612

\begin{align*} y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y&=-a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

59.392

\(1442\)

13613

\begin{align*} y y^{\prime }&=\left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

31.111

\(1443\)

13614

\begin{align*} y y^{\prime }&=\left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

49.222

\(1444\)

13615

\begin{align*} y y^{\prime }&=a x \cos \left (\lambda \,x^{2}\right ) y+x \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

21.785

\(1445\)

13619

\begin{align*} y y^{\prime } x&=a y^{2}+b y+c \,x^{n}+s \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

56.951

\(1446\)

13620

\begin{align*} y y^{\prime } x&=-n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

34.719

\(1447\)

13621

\begin{align*} 2 y y^{\prime } x&=\left (1-n \right ) y^{2}+\left (a \left (2 n +1\right ) x +2 n -1\right ) y-a^{2} n \,x^{2}-b x -n \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

42.515

\(1448\)

13622

\begin{align*} \left (a x y-a k y+b x -b k \right ) y^{\prime }&=c y^{2}+d x y+\left (-d k +b \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

64.080

\(1449\)

13627

\begin{align*} \left (A x y+B \,x^{2}+x k \right ) y^{\prime }&=A y^{2}+c x y+d \,x^{2}+\left (-A \beta +k \right ) y-c \beta x -k \beta \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

96.289

\(1450\)

13628

\begin{align*} \left (A x y+A k y+B \,x^{2}+B k x \right ) y^{\prime }&=c y^{2}+d x y+k \left (d -B \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

107.519

\(1451\)

13630

\begin{align*} \left (\left (a x +c \right ) y+\left (1-n \right ) x^{2}+\left (2 n -1\right ) x -n \right ) y^{\prime }&=2 a y^{2}+2 y x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

255.658

\(1452\)

13632

\begin{align*} x \left (\left (m -1\right ) \left (A x +B \right ) y+m \left (d \,x^{2}+e x +F \right )\right ) y^{\prime }&=\left (A \left (1-n \right ) x -B n \right ) y^{2}+\left (d \left (2-n \right ) x^{2}+e \left (1-n \right ) x -F n \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

423.643

\(1453\)

13633

\begin{align*} x \left (2 a x y+b \right ) y^{\prime }&=-4 a \,x^{2} y^{2}-3 b x y+c \,x^{2}+k \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.675

\(1454\)

13634

\begin{align*} \left (y x +a \,x^{n}+b \,x^{2}\right ) y^{\prime }&=y^{2}+c \,x^{n}+b x y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

241.806

\(1455\)

13636

\begin{align*} y y^{\prime }&=-n y^{2}+a \left (2 n +1\right ) {\mathrm e}^{x} y+b y-a^{2} n \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}+c \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

101.426

\(1456\)

13638

\begin{align*} y^{\prime }&=-y^{3}+3 y a^{2} x^{2}-2 a^{3} x^{3}+a \\ \end{align*}

[_Abel]

1.222

\(1457\)

13639

\begin{align*} y^{\prime }&=-y^{3}+\left (a x +b \right ) y^{2} \\ \end{align*}

[_Abel]

4.393

\(1458\)

13640

\begin{align*} y^{\prime }&=-y^{3}+\frac {y^{2}}{\left (a x +b \right )^{2}} \\ \end{align*}

[_rational, _Abel]

7.625

\(1459\)

13644

\begin{align*} y^{\prime }&=a y^{3} x +2 a b \,x^{2} y^{2}-b -2 a \,b^{3} x^{4} \\ \end{align*}

[_Abel]

3.175

\(1460\)

13648

\begin{align*} 9 y^{\prime }&=-x^{m} \left (a \,x^{1-m}+b \right )^{2 \lambda +1} y^{3}-x^{-2 m} \left (9 a +2+9 b m \,x^{m -1}\right ) \left (a \,x^{1-m}+b \right )^{-\lambda -2} \\ \end{align*}

[_Abel]

9.984

\(1461\)

13653

\begin{align*} x^{2} y^{\prime }&=y^{3}-3 a^{2} x^{4} y+2 a^{3} x^{6}+2 a \,x^{3} \\ \end{align*}

[_rational, _Abel]

1.374

\(1462\)

13654

\begin{align*} y^{\prime }&=-\left (a x +b \,x^{m}\right ) y^{3}+y^{2} \\ \end{align*}

[_Abel]

30.175

\(1463\)

13655

\begin{align*} y^{\prime }&=\frac {y^{3}}{\sqrt {a \,x^{2}+b x +c}}+y^{2} \\ \end{align*}

[_Abel]

59.778

\(1464\)

13656

\begin{align*} y^{\prime }&=-y^{3}+a \,{\mathrm e}^{\lambda x} y^{2} \\ \end{align*}

[_Abel]

3.845

\(1465\)

13657

\begin{align*} y^{\prime }&=-y^{3}+3 a^{2} {\mathrm e}^{2 \lambda x} y-2 a^{3} {\mathrm e}^{3 \lambda x}+a \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Abel]

2.339

\(1466\)

13665

\begin{align*} y^{\prime \prime }-\left (a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.224

\(1467\)

13667

\begin{align*} y^{\prime \prime }-\left (a \,x^{2}+b x c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.251

\(1468\)

13669

\begin{align*} y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.220

\(1469\)

13670

\begin{align*} y^{\prime \prime }-a \,x^{-2+n} \left (a \,x^{n}+n +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.207

\(1470\)

13671

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.217

\(1471\)

13674

\begin{align*} y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.056

\(1472\)

13677

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.648

\(1473\)

13678

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.431

\(1474\)

13679

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.975

\(1475\)

13680

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.913

\(1476\)

13681

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.041

\(1477\)

13682

\begin{align*} y^{\prime \prime }+a x y^{\prime }+b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.609

\(1478\)

13683

\begin{align*} y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.745

\(1479\)

13684

\begin{align*} y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.295

\(1480\)

13689

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.109

\(1481\)

13690

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.504

\(1482\)

13692

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.941

\(1483\)

13693

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.137

\(1484\)

13698

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.185

\(1485\)

13706

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.785

\(1486\)

13708

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.788

\(1487\)

13709

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.349

\(1488\)

13710

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+x^{n -1} a n +c \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.546

\(1489\)

13711

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.516

\(1490\)

13712

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.635

\(1491\)

13713

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.743

\(1492\)

13714

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.829

\(1493\)

13715

\begin{align*} y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.202

\(1494\)

13719

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.411

\(1495\)

13720

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n +m} a b +b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.563

\(1496\)

13721

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n +m} a b +x^{m} b c +x^{n -1} a n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.804

\(1497\)

13725

\begin{align*} y^{\prime \prime } x +a y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.595

\(1498\)

13727

\begin{align*} y^{\prime \prime } x +\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.725

\(1499\)

13729

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.776

\(1500\)

13731

\begin{align*} y^{\prime \prime } x +\left (b -x \right ) y^{\prime }-a y&=0 \\ \end{align*}

[_Laguerre]

3.214

\(1501\)

13732

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.454

\(1502\)

13734

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.774

\(1503\)

13735

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.796

\(1504\)

13739

\begin{align*} y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.676

\(1505\)

13740

\begin{align*} y^{\prime \prime } x +\left (b \,x^{2} a +b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.341

\(1506\)

13745

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.824

\(1507\)

13746

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.278

\(1508\)

13752

\begin{align*} y^{\prime \prime } x +a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.253

\(1509\)

13754

\begin{align*} y^{\prime \prime } x +\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.579

\(1510\)

13758

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.561

\(1511\)

13759

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.945

\(1512\)

13760

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.876

\(1513\)

13761

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{-2+n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.445

\(1514\)

13762

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+x^{n -1} a n -b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.444

\(1515\)

13763

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.242

\(1516\)

13765

\begin{align*} y^{\prime \prime } x +\left (x^{n +m} a b +a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.384

\(1517\)

13767

\begin{align*} \left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.781

\(1518\)

13768

\begin{align*} \left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.578

\(1519\)

13769

\begin{align*} \left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.339

\(1520\)

13775

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.031

\(1521\)

13776

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.974

\(1522\)

13778

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.968

\(1523\)

13780

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.898

\(1524\)

13781

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.760

\(1525\)

13782

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.165

\(1526\)

13783

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.631

\(1527\)

13792

\begin{align*} x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.835

\(1528\)

13794

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.943

\(1529\)

13795

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.514

\(1530\)

13796

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.518

\(1531\)

13797

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.790

\(1532\)

13799

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (b -n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.291

\(1533\)

13800

\begin{align*} a_{2} x^{2} y^{\prime \prime }+\left (a_{1} x^{2}+b_{1} x \right ) y^{\prime }+\left (a_{0} x^{2}+b_{0} x +c_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.572

\(1534\)

13802

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.921

\(1535\)

13803

\begin{align*} x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.824

\(1536\)

13804

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.721

\(1537\)

13805

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n +2 m}-b^{2} x^{4 m +2}+a m \,x^{n -1}-m^{2}-m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.580

\(1538\)

13807

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.400

\(1539\)

13808

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (b +n -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.631

\(1540\)

13809

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n +2}+b \,x^{2}+c \right ) y^{\prime }+\left (a n \,x^{n +1}+x^{n} a c +b c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.618

\(1541\)

13810

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+n \left (n -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

2.366

\(1542\)

13811

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.944

\(1543\)

13814

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

122.267

\(1544\)

13815

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\nu \left (\nu +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

111.076

\(1545\)

13817

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (\nu +n +1\right ) \left (\nu -n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

72.899

\(1546\)

13818

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

71.383

\(1547\)

13819

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (2 a +1\right ) y^{\prime }-b \left (2 a +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

150.948

\(1548\)

13820

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 a -3\right ) x y^{\prime }+\left (n +1\right ) \left (n +2 a -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

63.750

\(1549\)

13821

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

169.546

\(1550\)

13822

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

170.788

\(1551\)

13827

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

615.764

\(1552\)

13828

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (2 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

23.880

\(1553\)

13829

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

178.126

\(1554\)

13830

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (c \,x^{2}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{2}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.159

\(1555\)

13831

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 b \lambda \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

195.517

\(1556\)

13832

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y&=0 \\ \end{align*}

[_Jacobi]

187.750

\(1557\)

13833

\begin{align*} x \left (a +x \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.563

\(1558\)

13834

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[_Jacobi]

48.163

\(1559\)

13840

\begin{align*} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

187.519

\(1560\)

13841

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (k +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

193.937

\(1561\)

13842

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-x k +x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

217.829

\(1562\)

13844

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

88.050

\(1563\)

13845

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.225

\(1564\)

13846

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.774

\(1565\)

13847

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.824

\(1566\)

13848

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{3}+a b x -x^{2}+b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

128.622

\(1567\)

13849

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x -\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

130.665

\(1568\)

13851

\begin{align*} x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

180.109

\(1569\)

13852

\begin{align*} x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (c \,x^{2}+\left (a \lambda +2 b \right ) x +b \lambda \right ) y^{\prime }+\lambda \left (c -2 a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

240.240

\(1570\)

13855

\begin{align*} x^{2} \left (x +a_{2} \right ) y^{\prime \prime }+x \left (b_{1} x +a_{1} \right ) y^{\prime }+\left (b_{0} x +a_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

200.871

\(1571\)

13856

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }+\left (\beta -2 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

302.278

\(1572\)

13857

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }-\left (x \alpha +2 b -\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

263.487

\(1573\)

13858

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (-2 a \,x^{2}-\left (b +1\right ) x +k \right ) y^{\prime }+2 \left (a x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

295.620

\(1574\)

13859

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+x m +k \right ) y^{\prime }+\left (-1+k \right ) \left (\left (-a k +n \right ) x +m -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

350.702

\(1575\)

13860

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+x m +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

397.914

\(1576\)

13861

\begin{align*} \left (a \,x^{3}+x^{2}+b \right ) y^{\prime \prime }+a^{2} x \left (x^{2}-b \right ) y^{\prime }-a^{3} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

218.358

\(1577\)

13863

\begin{align*} x \left (a \,x^{2}+b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (x n +m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

367.588

\(1578\)

13864

\begin{align*} x \left (x -1\right ) \left (x -a \right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +d \right )-a \right ) x +a \gamma \right ) y^{\prime }+\left (\alpha \beta x -q \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

462.582

\(1579\)

13865

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }-\left (-\lambda ^{2}+x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

547.076

\(1580\)

13867

\begin{align*} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+3 \left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\left (6 a x +2 b +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

380.834

\(1581\)

13868

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\left (\alpha \gamma +\beta \right ) x +\beta \lambda \right ) y^{\prime }-\left (x \alpha +\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1253.904

\(1582\)

13869

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1282.818

\(1583\)

13872

\begin{align*} x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.573

\(1584\)

13875

\begin{align*} x^{4} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a \,x^{n -1}+a b \,x^{-2+n}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.899

\(1585\)

13878

\begin{align*} a \,x^{2} \left (x -1\right )^{2} y^{\prime \prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.721

\(1586\)

13879

\begin{align*} x^{2} \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) x y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

157.656

\(1587\)

13886

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }-\left (\nu \left (\nu +1\right ) \left (x^{2}-1\right )+n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

116.730

\(1588\)

13887

\begin{align*} \left (-x^{2}+1\right )^{2} y^{\prime \prime }-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (\nu \left (\nu +1\right ) \left (-x^{2}+1\right )-\mu ^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

105.647

\(1589\)

13888

\begin{align*} a \left (x^{2}-1\right )^{2} y^{\prime \prime }+b x \left (x^{2}-1\right ) y^{\prime }+\left (c \,x^{2}+d x +e \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

153.499

\(1590\)

13891

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-\left (b \,x^{n +1}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.721

\(1591\)

13892

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.306

\(1592\)

13896

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

119.495

\(1593\)

13897

\begin{align*} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+\left (\left (x^{2}+1\right ) \left (a^{2} x^{2}-\lambda \right )+m^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

128.777

\(1594\)

13901

\begin{align*} x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.436

\(1595\)

13902

\begin{align*} x^{n} y^{\prime \prime }+a x y^{\prime }-\left (b^{2} x^{n}+2 b \,x^{n -1}+a b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.287

\(1596\)

13904

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (-1+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.950

\(1597\)

13905

\begin{align*} x^{n} y^{\prime \prime }+\left (2 x^{n -1}+a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.496

\(1598\)

13906

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.323

\(1599\)

13907

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

55.085

\(1600\)

13908

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n +m}+1\right ) y^{\prime }+a \,x^{m} \left (1+m \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.285

\(1601\)

13909

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.661

\(1602\)

13911

\begin{align*} x \left (x^{n}+1\right ) y^{\prime \prime }+\left (\left (a -b \right ) x^{n}+a -n \right ) y^{\prime }+b \left (1-a \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.546

\(1603\)

13912

\begin{align*} x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

87.742

\(1604\)

13913

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a^{2} \left (n +1\right ) x^{2 n}+n -1\right ) y^{\prime }-\nu \left (\nu +1\right ) a^{2} n^{2} x^{2 n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

142.587

\(1605\)

13914

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

166.926

\(1606\)

13915

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.824

\(1607\)

13916

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.697

\(1608\)

13917

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.676

\(1609\)

13918

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-x^{n -1} a n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.040

\(1610\)

13919

\begin{align*} x^{2} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (n +1\right ) x \left (a^{2} x^{2 n}-b^{2}\right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

247.144

\(1611\)

13920

\begin{align*} \left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-b n +\beta \right ) x^{-2+n}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

386.540

\(1612\)

13922

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.228

\(1613\)

13923

\begin{align*} 2 \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+a n \,x^{n -1} b m \,x^{m -1} y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

139.171

\(1614\)

13927

\begin{align*} y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.892

\(1615\)

13928

\begin{align*} y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.086

\(1616\)

13929

\begin{align*} y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.959

\(1617\)

13930

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.318

\(1618\)

13931

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.385

\(1619\)

13935

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.053

\(1620\)

13936

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.920

\(1621\)

13938

\begin{align*} y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.212

\(1622\)

13939

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{\mu x} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.882

\(1623\)

13940

\begin{align*} y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.921

\(1624\)

13942

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.818

\(1625\)

13944

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.277

\(1626\)

13945

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.018

\(1627\)

13946

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.123

\(1628\)

13947

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.546

\(1629\)

13949

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.234

\(1630\)

13950

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.281

\(1631\)

13951

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.256

\(1632\)

13952

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 \mu x}+c \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.681

\(1633\)

13953

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \mu x}+d \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.868

\(1634\)

13954

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.711

\(1635\)

13955

\begin{align*} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.416

\(1636\)

13957

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+{\mathrm e}^{\lambda x} a c +{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.465

\(1637\)

13958

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b \,{\mathrm e}^{\mu x}-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+c \,{\mathrm e}^{2 \lambda x}+{\mathrm e}^{2 \mu x} b^{2}+b \left (\mu -\lambda \right ) {\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.568

\(1638\)

13959

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+a \lambda \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}-2 \lambda \right ) y^{\prime }+a^{2} b \lambda \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.839

\(1639\)

13960

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.008

\(1640\)

13964

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+k \left (\left (-a k +c \right ) {\mathrm e}^{\lambda x}+d -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.156

\(1641\)

13965

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.265

\(1642\)

14035

\begin{align*} \left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}+x \right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[_rational]

3.914

\(1643\)

14042

\begin{align*} y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.720

\(1644\)

14068

\begin{align*} \left (x -y^{\prime }-y\right )^{2}&=x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

56.862

\(1645\)

14139

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.231

\(1646\)

14154

\begin{align*} x^{2} y^{\prime \prime }-2 n x \left (x +1\right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.879

\(1647\)

14155

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} \left (x +1\right ) y^{\prime }+n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.319

\(1648\)

14165

\begin{align*} -2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.033

\(1649\)

14166

\begin{align*} y-y^{\prime } x -y^{\prime \prime }+x y^{\prime \prime \prime }&=-x^{2}+1 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.036

\(1650\)

14171

\begin{align*} 2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 y y^{\prime } x +6 y^{2}&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.044

\(1651\)

14173

\begin{align*} x^{2} y^{\prime \prime \prime }-5 y^{\prime \prime } x +\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.034

\(1652\)

14175

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.478

\(1653\)

14176

\begin{align*} x^{3} y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.603

\(1654\)

14177

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2}-y^{2} x^{2} \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

0.365

\(1655\)

14246

\begin{align*} x x^{\prime }&=1-t x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.443

\(1656\)

14247

\begin{align*} {x^{\prime }}^{2}+t x&=\sqrt {1+t} \\ \end{align*}

[‘y=_G(x,y’)‘]

53.056

\(1657\)

14442

\begin{align*} 3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.503

\(1658\)

14558

\begin{align*} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.095

\(1659\)

14747

\begin{align*} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.141

\(1660\)

14748

\begin{align*} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.102

\(1661\)

14832

\begin{align*} t^{3} x^{\prime \prime \prime }-\left (t +3\right ) t^{2} x^{\prime \prime }+2 t \left (t +3\right ) x^{\prime }-2 \left (t +3\right ) x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

\(1662\)

14834

\begin{align*} \left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

51.918

\(1663\)

14838

\begin{align*} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.120

\(1664\)

14841

\begin{align*} \left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.322

\(1665\)

14842

\begin{align*} x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x&=0 \\ \end{align*}

[_Lienard]

2.102

\(1666\)

14843

\begin{align*} f \left (t \right ) x^{\prime \prime }+x g \left (t \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.120

\(1667\)

14863

\begin{align*} x^{\prime }&=4 x-4 y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }&=4 x+4 y-y \left (x^{2}+y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.028

\(1668\)

14864

\begin{align*} x^{\prime }&=y+\frac {x \left (1-x^{2}-y^{2}\right )}{\sqrt {x^{2}+y^{2}}} \\ y^{\prime }&=-x+\frac {y \left (1-x^{2}-y^{2}\right )}{\sqrt {x^{2}+y^{2}}} \\ \end{align*}

system_of_ODEs

0.048

\(1669\)

14865

\begin{align*} x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

19.426

\(1670\)

14866

\begin{align*} x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.170

\(1671\)

14867

\begin{align*} x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.444

\(1672\)

14868

\begin{align*} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.487

\(1673\)

14869

\begin{align*} x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.566

\(1674\)

14870

\begin{align*} x^{\prime }&=x-x^{2} \\ y^{\prime }&=2 y-y^{2} \\ \end{align*}

system_of_ODEs

0.026

\(1675\)

14953

\begin{align*} \left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

\(1676\)

15037

\begin{align*} y^{\prime }&=x y^{3}+x^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Abel]

0.558

\(1677\)

15114

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

system_of_ODEs

0.032

\(1678\)

15117

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

0.920

\(1679\)

15121

\begin{align*} y^{\prime }&=t \ln \left (y^{2 t}\right )+t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.214

\(1680\)

15123

\begin{align*} y^{\prime }&=\ln \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

0.421

\(1681\)

15126

\begin{align*} y^{\prime \prime \prime }+y x&=\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.034

\(1682\)

15127

\begin{align*} y y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15.509

\(1683\)

15129

\begin{align*} y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.036

\(1684\)

15130

\begin{align*} y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.031

\(1685\)

15132

\begin{align*} y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.037

\(1686\)

15137

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y&=1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.746

\(1687\)

15141

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime } x -y^{2}&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.039

\(1688\)

15142

\begin{align*} {y^{\prime }}^{2}+x y {y^{\prime }}^{2}&=\ln \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

14.445

\(1689\)

15143

\begin{align*} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.030

\(1690\)

15144

\begin{align*} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=y x \\ \end{align*}

[NONE]

0.805

\(1691\)

15146

\begin{align*} {y^{\prime \prime \prime }}^{2}+\sqrt {y}&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.032

\(1692\)

15151

\begin{align*} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right )&=x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.052

\(1693\)

15152

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.171

\(1694\)

15153

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.767

\(1695\)

15154

\begin{align*} y^{\prime \prime } x +2 x^{2} y^{\prime }+\sin \left (x \right ) y&=\sinh \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.898

\(1696\)

15155

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y&=1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.437

\(1697\)

15156

\begin{align*} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.583

\(1698\)

15158

\begin{align*} x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.678

\(1699\)

15159

\begin{align*} y^{\prime \prime }+\frac {k x}{y^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.262

\(1700\)

15165

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.878

\(1701\)

15167

\begin{align*} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

228.016

\(1702\)

15172

\begin{align*} y^{\prime \prime } x +\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

9.019

\(1703\)

15184

\begin{align*} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}}&=\frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.069

\(1704\)

15255

\begin{align*} t^{2} y^{\prime \prime }-6 y^{\prime } t +\sin \left (2 t \right ) y&=\ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.986

\(1705\)

15256

\begin{align*} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t}&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.109

\(1706\)

15257

\begin{align*} y^{\prime \prime }+y^{\prime } t -y \ln \left (t \right )&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.892

\(1707\)

15258

\begin{align*} t^{3} y^{\prime \prime }-2 y^{\prime } t +y&=t^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.648

\(1708\)

15309

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.095

\(1709\)

15310

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.151

\(1710\)

15319

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

87.602

\(1711\)

15479

\begin{align*} x^{\prime \prime }+x^{\prime }+x-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

13.886

\(1712\)

15480

\begin{align*} x^{\prime \prime }+x^{\prime }+x+x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.395

\(1713\)

15523

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.155

\(1714\)

15540

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ \end{align*}

[_Abel]

1.540

\(1715\)

15545

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.586

\(1716\)

15657

\begin{align*} \sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\ y \left (-2\right ) &= 3 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.524

\(1717\)

15658

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right )&=x \,{\mathrm e}^{x} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.922

\(1718\)

15733

\begin{align*} y_{1}^{\prime }&=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }&=2 y_{1}+1-6 x \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= -2 \\ y_{2} \left (1\right ) &= -5 \\ \end{align*}

system_of_ODEs

0.037

\(1719\)

15734

\begin{align*} y_{1}^{\prime }&=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }&=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (-1\right ) &= 3 \\ y_{2} \left (-1\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.043

\(1720\)

15736

\begin{align*} y_{1}^{\prime }&=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }&=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 1 \\ y_{2} \left (1\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.043

\(1721\)

15737

\begin{align*} y_{1}^{\prime }&=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }&=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (2\right ) &= 1 \\ y_{2} \left (2\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.043

\(1722\)

15738

\begin{align*} y_{1}^{\prime }&={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }&=\frac {y_{1}}{\left (x -2\right )^{2}} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.041

\(1723\)

15739

\begin{align*} y_{1}^{\prime }&={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }&=\frac {y_{1}}{\left (x -2\right )^{2}} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (3\right ) &= 1 \\ y_{2} \left (3\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.041

\(1724\)

15751

\begin{align*} y_{1}^{\prime }&=2 x y_{1}-x^{2} y_{2}+4 x \\ y_{2}^{\prime }&={\mathrm e}^{x} y_{1}+3 \,{\mathrm e}^{-x} y_{2}-\cos \left (3 x \right ) \\ \end{align*}

system_of_ODEs

0.039

\(1725\)

15754

\begin{align*} y_{1}^{\prime }&=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }&=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \\ \end{align*}

system_of_ODEs

0.034

\(1726\)

15755

\begin{align*} y_{1}^{\prime }&=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }&=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \\ \end{align*}

system_of_ODEs

0.035

\(1727\)

15847

\begin{align*} y^{\prime }&=2 y^{3}+t^{2} \\ y \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

[_Abel]

0.916

\(1728\)

15943

\begin{align*} y^{\prime }&=\left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

[‘x=_G(y,y’)‘]

11.931

\(1729\)

15966

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\ \end{align*}

[_Abel]

7.580

\(1730\)

16159

\begin{align*} y^{2} y^{\prime \prime }&=8 x^{2} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.325

\(1731\)

16198

\begin{align*} \sin \left (x +y\right )-y y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

9.589

\(1732\)

16257

\begin{align*} y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

3.645

\(1733\)

16435

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.411

\(1734\)

16436

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.452

\(1735\)

16437

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }&=4 y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.348

\(1736\)

16438

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+4 y&=y^{3} \\ \end{align*}

[NONE]

0.523

\(1737\)

16444

\begin{align*} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }&=y \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

0.037

\(1738\)

16468

\begin{align*} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.042

\(1739\)

16932

\begin{align*} t x^{\prime }+2 x&=15 y \\ y^{\prime } t&=x \\ \end{align*}

system_of_ODEs

0.035

\(1740\)

16952

\begin{align*} x^{\prime }&=x y-6 y \\ y^{\prime }&=x-y-5 \\ \end{align*}

system_of_ODEs

0.035

\(1741\)

16955

\begin{align*} y y^{\prime }+y^{4}&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

14.814

\(1742\)

16959

\begin{align*} x {y^{\prime \prime }}^{2}+2 y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.055

\(1743\)

16960

\begin{align*} x^{\prime \prime }+2 \sin \left (x\right )&=\sin \left (2 t \right ) \\ \end{align*}

[NONE]

1.692

\(1744\)

17010

\begin{align*} 4 \left (x^{2}+y^{2}\right ) x -5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

24.788

\(1745\)

17035

\begin{align*} y^{\prime }+t^{2}&=\frac {1}{y^{2}} \\ \end{align*}

[_rational]

3.041

\(1746\)

17220

\begin{align*} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

6.641

\(1747\)

17297

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=y^{4} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Bernoulli]

22.027

\(1748\)

17377

\begin{align*} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.765

\(1749\)

17421

\begin{align*} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.047

\(1750\)

17422

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.046

\(1751\)

17706

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.319

\(1752\)

17813

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

81.432

\(1753\)

17824

\begin{align*} x^{\prime }&=x^{2} \\ y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.047

\(1754\)

17844

\begin{align*} y^{\prime }&=\sin \left (y\right )-\cos \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

3.485

\(1755\)

17847

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.112

\(1756\)

17902

\begin{align*} x^{2} y^{\prime } \cos \left (y\right )+1&=0 \\ y \left (\infty \right ) &= \frac {16 \pi }{3} \\ \end{align*}

[_separable]

60.288

\(1757\)

17903

\begin{align*} x^{2} y^{\prime }+\cos \left (2 y\right )&=1 \\ y \left (\infty \right ) &= \frac {10 \pi }{3} \\ \end{align*}

[_separable]

17.137

\(1758\)

17957

\begin{align*} y^{\prime }-2 \,{\mathrm e}^{x} y&=2 \sqrt {{\mathrm e}^{x} y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

32.082

\(1759\)

17963

\begin{align*} y^{\prime }&=y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10.547

\(1760\)

17966

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

18.198

\(1761\)

18124

\begin{align*} y^{\prime \prime \prime }&=3 y y^{\prime } \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.046

\(1762\)

18285

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=8 \,{\mathrm e}^{x}+9 \\ y \left (-\infty \right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.560

\(1763\)

18287

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \\ y \left (-\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.905

\(1764\)

18336

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=\frac {6+x}{x^{2}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

38.008

\(1765\)

18338

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x -1\right )^{2} {\mathrm e}^{x} \\ y \left (-\infty \right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.019

\(1766\)

18339

\begin{align*} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y&=\frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.381

\(1767\)

18340

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y&=4 \,{\mathrm e}^{x} \\ y \left (-\infty \right ) &= 0 \\ y^{\prime }\left (-1\right ) &= -{\mathrm e}^{-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.715

\(1768\)

18341

\begin{align*} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+y x&=2 \ln \left (x \right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

82.930

\(1769\)

18342

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y&=2 x -2 \\ y \left (\infty \right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

40.655

\(1770\)

18347

\begin{align*} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.078

\(1771\)

18349

\begin{align*} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.875

\(1772\)

18352

\begin{align*} x^{\prime \prime }-x^{\prime }+x-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

51.343

\(1773\)

18356

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2 \pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.896

\(1774\)

18378

\begin{align*} y^{\prime \prime \prime }+x \sin \left (y\right )&=0 \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[NONE]

0.039

\(1775\)

18402

\begin{align*} x_{1}^{\prime }&=-2 t x_{1}^{2} \\ x_{2}^{\prime }&=\frac {x_{2}+t}{t} \\ \end{align*}

system_of_ODEs

0.035

\(1776\)

18403

\begin{align*} x_{1}^{\prime }&={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }&=2 \,{\mathrm e}^{x_{1}} \\ \end{align*}

system_of_ODEs

0.034

\(1777\)

18404

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

system_of_ODEs

0.034

\(1778\)

18405

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }&=x_{2}-x_{1} \\ \end{align*}

system_of_ODEs

0.031

\(1779\)

18406

\begin{align*} x^{\prime }&=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }&=\frac {x \,{\mathrm e}^{-y}}{t} \\ \end{align*}

system_of_ODEs

0.038

\(1780\)

18407

\begin{align*} x^{\prime }&=\frac {y+t}{x+y} \\ y^{\prime }&=\frac {x-t}{x+y} \\ \end{align*}

system_of_ODEs

0.032

\(1781\)

18408

\begin{align*} x^{\prime }&=\frac {t -y}{-x+y} \\ y^{\prime }&=\frac {x-t}{-x+y} \\ \end{align*}

system_of_ODEs

0.032

\(1782\)

18409

\begin{align*} x^{\prime }&=\frac {y+t}{x+y} \\ y^{\prime }&=\frac {t +x}{x+y} \\ \end{align*}

system_of_ODEs

0.031

\(1783\)

18417

\begin{align*} x^{\prime \prime }&=y \\ y^{\prime \prime }&=x \\ \end{align*}

system_of_ODEs

0.026

\(1784\)

18418

\begin{align*} x^{\prime \prime }+y^{\prime }+x&=0 \\ x^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

system_of_ODEs

0.038

\(1785\)

18419

\begin{align*} x^{\prime \prime }&=3 x+y \\ y^{\prime }&=-2 x \\ \end{align*}

system_of_ODEs

0.026

\(1786\)

18420

\begin{align*} x^{\prime \prime }&=x^{2}+y \\ y^{\prime }&=-2 x x^{\prime }+x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.027

\(1787\)

18421

\begin{align*} x^{\prime }&=x^{2}+y^{2} \\ y^{\prime }&=2 x y \\ \end{align*}

system_of_ODEs

0.026

\(1788\)

18422

\begin{align*} x^{\prime }&=-\frac {1}{y} \\ y^{\prime }&=\frac {1}{x} \\ \end{align*}

system_of_ODEs

0.025

\(1789\)

18423

\begin{align*} x^{\prime }&=\frac {x}{y} \\ y^{\prime }&=\frac {y}{x} \\ \end{align*}

system_of_ODEs

0.025

\(1790\)

18424

\begin{align*} x^{\prime }&=\frac {y}{x-y} \\ y^{\prime }&=\frac {x}{x-y} \\ \end{align*}

system_of_ODEs

0.030

\(1791\)

18425

\begin{align*} x^{\prime }&=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }&=\cos \left (x\right ) \sin \left (y\right ) \\ \end{align*}

system_of_ODEs

0.032

\(1792\)

18426

\begin{align*} {\mathrm e}^{t} x^{\prime }&=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }&=\frac {1}{x} \\ \end{align*}

system_of_ODEs

0.033

\(1793\)

18427

\begin{align*} x^{\prime }&=\cos \left (x\right )^{2} \cos \left (y\right )^{2}+\sin \left (x\right )^{2} \cos \left (y\right )^{2} \\ y^{\prime }&=-\frac {\sin \left (2 x\right ) \sin \left (2 y\right )}{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.041

\(1794\)

18439

\begin{align*} x^{\prime }&=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }&=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

system_of_ODEs

0.035

\(1795\)

18552

\begin{align*} y^{\prime }&=\sqrt {1-t^{2}-y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.786

\(1796\)

18553

\begin{align*} y^{\prime }&=\frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.711

\(1797\)

18554

\begin{align*} y^{\prime }&=\left (t^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.974

\(1798\)

18575

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

8.517

\(1799\)

18591

\begin{align*} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.548

\(1800\)

18631

\begin{align*} x^{\prime }&=-2 t x+y \\ y^{\prime }&=3 x-y \\ \end{align*}

system_of_ODEs

0.023

\(1801\)

18634

\begin{align*} x^{\prime }&=-x+t y \\ y^{\prime }&=t x-y \\ \end{align*}

system_of_ODEs

0.023

\(1802\)

18635

\begin{align*} x^{\prime }&=x+y+4 \\ y^{\prime }&=-2 x+\sin \left (t \right ) y \\ \end{align*}

system_of_ODEs

0.028

\(1803\)

18705

\begin{align*} x^{\prime }&=-x+y+x^{2} \\ y^{\prime }&=y-2 x y \\ \end{align*}

system_of_ODEs

0.046

\(1804\)

18706

\begin{align*} x^{\prime }&=2 y \,x^{2}-3 x^{2}-4 y \\ y^{\prime }&=-2 x \,y^{2}+6 x y \\ \end{align*}

system_of_ODEs

0.033

\(1805\)

18707

\begin{align*} x^{\prime }&=3 x-x^{2} \\ y^{\prime }&=2 x y-3 y+2 \\ \end{align*}

system_of_ODEs

0.030

\(1806\)

18708

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=y+2 x y \\ \end{align*}

system_of_ODEs

0.027

\(1807\)

18709

\begin{align*} x^{\prime }&=2-y \\ y^{\prime }&=y-x^{2} \\ \end{align*}

system_of_ODEs

0.027

\(1808\)

18710

\begin{align*} x^{\prime }&=x-x^{2}-x y \\ y^{\prime }&=\frac {y}{2}-\frac {y^{2}}{4}-\frac {3 x y}{4} \\ \end{align*}

system_of_ODEs

0.034

\(1809\)

18711

\begin{align*} x^{\prime }&=-\left (x-y\right ) \left (1-x-y\right ) \\ y^{\prime }&=x \left (2+y\right ) \\ \end{align*}

system_of_ODEs

0.028

\(1810\)

18712

\begin{align*} x^{\prime }&=y \left (2-x-y\right ) \\ y^{\prime }&=-x-y-2 x y \\ \end{align*}

system_of_ODEs

0.031

\(1811\)

18713

\begin{align*} x^{\prime }&=\left (2+x\right ) \left (-x+y\right ) \\ y^{\prime }&=y-x^{2}-y^{2} \\ \end{align*}

system_of_ODEs

0.030

\(1812\)

18714

\begin{align*} x^{\prime }&=-x+2 x y \\ y^{\prime }&=y-x^{2}-y^{2} \\ \end{align*}

system_of_ODEs

0.032

\(1813\)

18715

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=x-\frac {x^{3}}{5}-\frac {y}{5} \\ \end{align*}

system_of_ODEs

0.026

\(1814\)

18717

\begin{align*} x^{\prime }&=x \left (1-x-y\right ) \\ y^{\prime }&=y \left (\frac {3}{4}-y-\frac {x}{2}\right ) \\ \end{align*}

system_of_ODEs

0.034

\(1815\)

18719

\begin{align*} y^{\prime \prime }+y^{\prime }+y+y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.286

\(1816\)

18720

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

112.118

\(1817\)

18722

\begin{align*} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Van_der_Pol]

9.817

\(1818\)

18731

\begin{align*} \left (t -1\right ) y^{\prime \prime }-3 y^{\prime } t +4 y&=\sin \left (t \right ) \\ y \left (-2\right ) &= 2 \\ y^{\prime }\left (-2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.102

\(1819\)

18732

\begin{align*} t \left (t -4\right ) y^{\prime \prime }+3 y^{\prime } t +4 y&=2 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

111.697

\(1820\)

18733

\begin{align*} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right )&=0 \\ y \left (2\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.115

\(1821\)

18734

\begin{align*} \left (x +3\right ) y^{\prime \prime }+y^{\prime } x +y \ln \left (x \right )&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.377

\(1822\)

18735

\begin{align*} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y&=0 \\ y \left (3\right ) &= 1 \\ y^{\prime }\left (3\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.186

\(1823\)

18737

\begin{align*} y^{\prime \prime }-\frac {t}{y}&=\frac {1}{\pi } \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[NONE]

0.339

\(1824\)

18745

\begin{align*} a y^{\prime \prime }+b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.156

\(1825\)

18857

\begin{align*} y^{\prime \prime }+y+\frac {y^{3}}{5}&=\cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.987

\(1826\)

18858

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5}&=\cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

1.050

\(1827\)

18967

\begin{align*} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y&=\cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.044

\(1828\)

18968

\begin{align*} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.043

\(1829\)

18969

\begin{align*} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y&=\ln \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.043

\(1830\)

18970

\begin{align*} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (x +1\right ) y^{\prime \prime }+\tan \left (x \right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.048

\(1831\)

18971

\begin{align*} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.052

\(1832\)

18973

\begin{align*} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y&=\cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.040

\(1833\)

18974

\begin{align*} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.043

\(1834\)

18975

\begin{align*} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y&=\ln \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.048

\(1835\)

18976

\begin{align*} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.039

\(1836\)

18977

\begin{align*} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.045

\(1837\)

19061

\begin{align*} x^{\prime }&=-2 y+x y \\ y^{\prime }&=x+4 x y \\ \end{align*}

system_of_ODEs

0.033

\(1838\)

19062

\begin{align*} x^{\prime }&=1+5 y \\ y^{\prime }&=1-6 x^{2} \\ \end{align*}

system_of_ODEs

0.029

\(1839\)

19092

\begin{align*} y^{\prime } \left (x^{2}+y^{2}+3\right )&=2 x \left (2 y-\frac {x^{2}}{y}\right ) \\ \end{align*}

[_rational]

5.658

\(1840\)

19107

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\ \end{align*}

[_rational]

5.609

\(1841\)

19139

\begin{align*} y&={y^{\prime }}^{2}-y^{\prime } x +\frac {x^{3}}{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

27.803

\(1842\)

19151

\begin{align*} n \,x^{3} y^{\prime \prime }&=\left (-y^{\prime } x +y\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.924

\(1843\)

19152

\begin{align*} y^{2} \left (x^{2} y^{\prime \prime }-y^{\prime } x +y\right )&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.646

\(1844\)

19153

\begin{align*} x^{2} y^{2} y^{\prime \prime }-3 y^{\prime } y^{2} x +4 y^{3}+x^{6}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.714

\(1845\)

19154

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1.504

\(1846\)

19155

\begin{align*} x \left (x^{2} y^{\prime }+2 y x \right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1&=0 \\ \end{align*}

[NONE]

4.698

\(1847\)

19158

\begin{align*} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x&=4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.708

\(1848\)

19161

\begin{align*} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

0.140

\(1849\)

19166

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

99.883

\(1850\)

19170

\begin{align*} -y+y^{\prime } x -y^{\prime \prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.039

\(1851\)

19174

\begin{align*} -2 y x +\left (x^{2}+2\right ) y^{\prime }-2 y^{\prime \prime } x +\left (x^{2}+2\right ) y^{\prime \prime \prime }&=x^{4}+12 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.064

\(1852\)

19177

\begin{align*} y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )}&={\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.214

\(1853\)

19211

\begin{align*} y^{\prime }&=\frac {y^{2}}{z} \\ z^{\prime }&=\frac {y}{2} \\ \end{align*}

system_of_ODEs

0.032

\(1854\)

19212

\begin{align*} y^{\prime }&=1-\frac {1}{z} \\ z^{\prime }&=\frac {1}{-x +y} \\ \end{align*}

system_of_ODEs

0.036

\(1855\)

19214

\begin{align*} y^{\prime \prime }&=x +y^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[NONE]

0.328

\(1856\)

19215

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y^{2}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_Emden, _modified]]

15.248

\(1857\)

19216

\begin{align*} y^{\prime }&=\frac {z^{2}}{y} \\ z^{\prime }&=\frac {y^{2}}{z} \\ \end{align*}

system_of_ODEs

0.036

\(1858\)

19217

\begin{align*} y^{\prime }&=\frac {y^{2}}{z} \\ z^{\prime }&=\frac {z^{2}}{y} \\ \end{align*}

system_of_ODEs

0.039

\(1859\)

19221

\begin{align*} y^{\prime \prime }+z^{\prime }-2 z&={\mathrm e}^{2 x} \\ z^{\prime }+2 y^{\prime }-3 y&=0 \\ \end{align*}

system_of_ODEs

0.050

\(1860\)

19223

\begin{align*} y^{\prime }+\frac {2 z}{x^{2}}&=1 \\ z^{\prime }+y&=x \\ \end{align*}

system_of_ODEs

0.031

\(1861\)

19224

\begin{align*} t x^{\prime }-x-3 y&=t \\ y^{\prime } t -x+y&=0 \\ \end{align*}

system_of_ODEs

0.034

\(1862\)

19225

\begin{align*} t x^{\prime }+6 x-y-3 z&=0 \\ y^{\prime } t +23 x-6 y-9 z&=0 \\ t z^{\prime }+x+y-2 z&=0 \\ \end{align*}

system_of_ODEs

0.045

\(1863\)

19393

\begin{align*} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime }&=2 y x -{\mathrm e}^{y}-x \\ \end{align*}

[NONE]

0.911

\(1864\)

19458

\begin{align*} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.861

\(1865\)

19493

\begin{align*} y^{\prime \prime }+3 y^{\prime } x +x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.936

\(1866\)

19581

\begin{align*} x^{2} y^{\prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.043

\(1867\)

19591

\begin{align*} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.096

\(1868\)

19593

\begin{align*} x^{2} y^{\prime \prime }+\left (-x +2\right ) y^{\prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.191

\(1869\)

19599

\begin{align*} x^{4} y^{\prime \prime }+\sin \left (x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.090

\(1870\)

19607

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.091

\(1871\)

19608

\begin{align*} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.106

\(1872\)

19622

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.111

\(1873\)

19658

\begin{align*} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

47.033

\(1874\)

19702

\begin{align*} x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.869

\(1875\)

19705

\begin{align*} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.643

\(1876\)

19707

\begin{align*} v^{\prime \prime }&=\left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \\ \end{align*}

[[_2nd_order, _missing_x]]

6.285

\(1877\)

19709

\begin{align*} \sqrt {y^{\prime }+y}&=\left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \\ \end{align*}

[NONE]

2.279

\(1878\)

19782

\begin{align*} y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5}&=0 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

0.231

\(1879\)

19783

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime }&=y^{2} \left (1+y^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

13.201

\(1880\)

19784

\begin{align*} y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 y y^{\prime } x +3 y^{2} x^{2}\right ) y^{\prime }+x^{3} y^{3}&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.048

\(1881\)

19998

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

76.720

\(1882\)

19999

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

36.955

\(1883\)

20013

\begin{align*} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

245.902

\(1884\)

20035

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right )&=2 y^{\prime } \\ \end{align*}

[_rational]

34.272

\(1885\)

20100

\begin{align*} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.771

\(1886\)

20108

\begin{align*} 16 \left (x +1\right )^{4} y^{\prime \prime \prime \prime }+96 \left (x +1\right )^{3} y^{\prime \prime \prime }+104 \left (x +1\right )^{2} y^{\prime \prime }+8 \left (x +1\right ) y^{\prime }+y&=x^{2}+4 x +3 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.051

\(1887\)

20120

\begin{align*} \sqrt {x}\, y^{\prime \prime }+2 y^{\prime } x +3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.555

\(1888\)

20121

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }&=x y^{2} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.993

\(1889\)

20146

\begin{align*} x^{4} y^{\prime \prime }+y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.070

\(1890\)

20151

\begin{align*} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

1.806

\(1891\)

20153

\begin{align*} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

3.420

\(1892\)

20178

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.490

\(1893\)

20191

\begin{align*} y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.517

\(1894\)

20196

\begin{align*} x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.035

\(1895\)

20202

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.539

\(1896\)

20209

\begin{align*} x^{\prime \prime }-3 x-4 y&=0 \\ x+y^{\prime \prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.029

\(1897\)

20274

\begin{align*} y^{\prime }-\frac {\tan \left (y\right )}{x +1}&=\left (x +1\right ) {\mathrm e}^{x} \sec \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

10.594

\(1898\)

20281

\begin{align*} y^{\prime }+\frac {y \ln \left (y\right )}{x}&=\frac {y}{x^{2}}-\ln \left (y\right )^{2} \\ \end{align*}

[‘x=_G(y,y’)‘]

2.620

\(1899\)

20296

\begin{align*} \frac {y y^{\prime }+x}{-y+y^{\prime } x}&=\sqrt {\frac {a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

78.743

\(1900\)

20318

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.681

\(1901\)

20430

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

81.651

\(1902\)

20433

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

29.987

\(1903\)

20443

\begin{align*} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

83.655

\(1904\)

20476

\begin{align*} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[_rational]

88.424

\(1905\)

20477

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

13.757

\(1906\)

20480

\begin{align*} \left (x^{2} y^{\prime }+y^{2}\right ) \left (y^{\prime } x +y\right )&=\left (1+y^{\prime }\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

18.679

\(1907\)

20483

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right )&=2 y^{\prime } \\ \end{align*}

[_rational]

67.546

\(1908\)

20529

\begin{align*} 3 y x +\left (x^{2}+2\right ) y^{\prime }+4 y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.049

\(1909\)

20530

\begin{align*} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.646

\(1910\)

20534

\begin{align*} y^{2}+\left (2 y x -1\right ) y^{\prime }+y^{\prime \prime } x +x^{2} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.045

\(1911\)

20584

\begin{align*} 2 x^{2} y y^{\prime \prime }+y^{2}&=x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.457

\(1912\)

20585

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.415

\(1913\)

20586

\begin{align*} x^{4} y^{\prime \prime }&=\left (x^{3}+2 y x \right ) y^{\prime }-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.868

\(1914\)

20587

\begin{align*} x^{4} y^{\prime \prime }-x^{3} y^{\prime }&=x^{2} {y^{\prime }}^{2}-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.098

\(1915\)

20588

\begin{align*} x^{2} y^{\prime \prime }+4 y^{2}-6 y&=x^{4} {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.547

\(1916\)

20609

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }+y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.040

\(1917\)

20619

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.868

\(1918\)

20649

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.379

\(1919\)

20672

\begin{align*} y^{\prime \prime } x +\left (x^{2}+1\right ) y^{\prime }+2 y x&=2 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

36.316

\(1920\)

20676

\begin{align*} t x^{\prime }+y&=0 \\ y^{\prime } t +x&=0 \\ \end{align*}

system_of_ODEs

0.033

\(1921\)

20690

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=x^{3} \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

7.458

\(1922\)

20693

\begin{align*} \left (x y \sin \left (y x \right )+\cos \left (y x \right )\right ) y+\left (x y \sin \left (y x \right )-\cos \left (y x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.592

\(1923\)

20695

\begin{align*} 3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

8.062

\(1924\)

20730

\begin{align*} 3 y {y^{\prime }}^{2}-2 y y^{\prime } x +4 y^{2}-x^{2}&=0 \\ \end{align*}

[_rational]

76.627

\(1925\)

20732

\begin{align*} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

298.737

\(1926\)

20745

\begin{align*} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

82.694

\(1927\)

20754

\begin{align*} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.043

\(1928\)

20756

\begin{align*} 16 \left (x +1\right )^{4} y^{\prime \prime \prime \prime }+96 \left (x +1\right )^{3} y^{\prime \prime \prime }+104 \left (x +1\right )^{2} y^{\prime \prime }+8 \left (x +1\right ) y^{\prime }+y&=x^{2}+4 x +3 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.065

\(1929\)

20758

\begin{align*} 2 x^{2} y y^{\prime \prime }+4 y^{2}&=x^{2} {y^{\prime }}^{2}+2 y y^{\prime } x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.627

\(1930\)

20764

\begin{align*} \sqrt {x}\, y^{\prime \prime }+2 y^{\prime } x +3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.942

\(1931\)

20766

\begin{align*} 2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right )&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

8.912

\(1932\)

20768

\begin{align*} y+3 y^{\prime } x +2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.121

\(1933\)

20769

\begin{align*} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

0.613

\(1934\)

20777

\begin{align*} y^{\prime }-y y^{\prime \prime }&=n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \\ \end{align*}

[[_2nd_order, _missing_x]]

125.630

\(1935\)

20780

\begin{align*} x^{4} y^{\prime \prime }&=\left (-y^{\prime } x +y\right )^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.285

\(1936\)

20781

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=x^{2} y^{\prime }-y^{2} \\ \end{align*}

[NONE]

0.707

\(1937\)

20786

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.368

\(1938\)

20788

\begin{align*} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.492

\(1939\)

20805

\begin{align*} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-\cot \left (x \right ) y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.518

\(1940\)

20810

\begin{align*} t x^{\prime }&=t -2 x \\ y^{\prime } t&=t x+t y+2 x-t \\ \end{align*}

system_of_ODEs

0.032

\(1941\)

20821

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.862

\(1942\)

20891

\begin{align*} y^{\prime \prime } x -y^{\prime } x +y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.552

\(1943\)

20900

\begin{align*} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.363

\(1944\)

20901

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.220

\(1945\)

20989

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Abel]

2.619

\(1946\)

20990

\begin{align*} y^{\prime }&=x +\sqrt {1+y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.123

\(1947\)

20991

\begin{align*} x^{\prime }&=x \cos \left (t \right )-\sin \left (t \right ) y \\ y^{\prime }&=x \sin \left (t \right )+y \cos \left (t \right ) \\ \end{align*}

system_of_ODEs

0.039

\(1948\)

20992

\begin{align*} x^{\prime }&=\left (3 t -1\right ) x-\left (1-t \right ) y+t \,{\mathrm e}^{t^{2}} \\ y^{\prime }&=-\left (t +2\right ) x+\left (-2+t \right ) y-{\mathrm e}^{t^{2}} \\ \end{align*}

system_of_ODEs

0.039

\(1949\)

21001

\begin{align*} w_{1}^{\prime }&=w_{2} \\ w_{2}^{\prime }&=\frac {a w_{1}}{z^{2}} \\ \end{align*}

system_of_ODEs

0.035

\(1950\)

21039

\begin{align*} x^{\prime }&=t^{2} x^{4}+1 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Chini]

2.639

\(1951\)

21041

\begin{align*} x^{\prime }&=\sin \left (t x\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.642

\(1952\)

21044

\begin{align*} x^{\prime }&=\arctan \left (x\right )+t \\ \end{align*}

[‘y=_G(x,y’)‘]

8.616

\(1953\)

21076

\begin{align*} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.305

\(1954\)

21094

\begin{align*} {x^{\prime }}^{2}&=x^{2}+t^{2}-1 \\ \end{align*}

[‘y=_G(x,y’)‘]

10.319

\(1955\)

21106

\begin{align*} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.315

\(1956\)

21107

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.681

\(1957\)

21129

\begin{align*} x^{\prime \prime }+2 x^{\prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (\infty \right ) &= a \\ \end{align*}

[[_2nd_order, _missing_x]]

7.836

\(1958\)

21156

\begin{align*} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.107

\(1959\)

21157

\begin{align*} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.864

\(1960\)

21159

\begin{align*} x^{\prime \prime }-p \left (t \right ) x&=q \left (t \right ) \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.189

\(1961\)

21160

\begin{align*} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.829

\(1962\)

21167

\begin{align*} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.423

\(1963\)

21168

\begin{align*} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.287

\(1964\)

21235

\begin{align*} x^{\prime }+t y&=-1 \\ x^{\prime }+y^{\prime }&=2 \\ \end{align*}

system_of_ODEs

0.037

\(1965\)

21236

\begin{align*} x^{\prime }+y&=3 t \\ y^{\prime }-t x^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.039

\(1966\)

21237

\begin{align*} x^{\prime }-t y&=1 \\ y^{\prime }-t x^{\prime }&=3 \\ \end{align*}

system_of_ODEs

0.037

\(1967\)

21238

\begin{align*} t^{2} x^{\prime }-y&=1 \\ y^{\prime }-2 x&=0 \\ \end{align*}

system_of_ODEs

0.040

\(1968\)

21240

\begin{align*} t x^{\prime }+y^{\prime }&=1 \\ y^{\prime }+x+{\mathrm e}^{x^{\prime }}&=1 \\ \end{align*}

system_of_ODEs

0.061

\(1969\)

21241

\begin{align*} x x^{\prime }+y&=2 t \\ y^{\prime }+2 x^{2}&=1 \\ \end{align*}

system_of_ODEs

0.038

\(1970\)

21249

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.057

\(1971\)

21250

\begin{align*} x^{\prime }&=2 x-7 x y-a x \\ y^{\prime }&=-y+4 x y-a y \\ \end{align*}

system_of_ODEs

0.033

\(1972\)

21251

\begin{align*} x^{\prime }&=2 x-2 x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.033

\(1973\)

21252

\begin{align*} x^{\prime }&=x-4 x y \\ y^{\prime }&=-2 y+x y \\ \end{align*}

system_of_ODEs

0.046

\(1974\)

21253

\begin{align*} x^{\prime }&=x \left (3-y\right ) \\ y^{\prime }&=y \left (x-5\right ) \\ \end{align*}

system_of_ODEs

0.045

\(1975\)

21269

\begin{align*} t x^{\prime \prime }&=t x+1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.653

\(1976\)

21275

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[_Lienard]

3.726

\(1977\)

21276

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-1\right ) x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[_Bessel]

26.108

\(1978\)

21277

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Bessel]

26.922

\(1979\)

21279

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=\lambda x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.900

\(1980\)

21316

\begin{align*} x^{\prime }&=-x+y+y^{2} \\ y^{\prime }&=-2 y-x^{2} \\ \end{align*}

system_of_ODEs

0.026

\(1981\)

21317

\begin{align*} x^{\prime }&=-x^{3} \\ y^{\prime }&=-y^{3} \\ \end{align*}

system_of_ODEs

0.023

\(1982\)

21322

\begin{align*} x^{\prime \prime }+4 x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.290

\(1983\)

21324

\begin{align*} -x^{\prime \prime }&=1-x-x^{2} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

134.207

\(1984\)

21325

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.255

\(1985\)

21326

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x^{2}} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.453

\(1986\)

21327

\begin{align*} -x^{\prime \prime }&=\frac {1}{\sqrt {x^{2}+1}}-x \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.668

\(1987\)

21328

\begin{align*} -x^{\prime \prime }&=2 x-x^{2} \\ x \left (0\right ) &= 0 \\ x \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

30.702

\(1988\)

21329

\begin{align*} -x^{\prime \prime }&=\arctan \left (x\right ) \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

212.669

\(1989\)

21451

\begin{align*} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.964

\(1990\)

21466

\begin{align*} y^{\prime }&=1+x +\cos \left (x \right ) x^{2}-\left (1+4 \cos \left (x \right ) x \right ) y+2 y^{2} \cos \left (x \right ) \\ \end{align*}

[_Riccati]

33.632

\(1991\)

21549

\begin{align*} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.681

\(1992\)

21569

\begin{align*} y^{\prime \prime }-2 s y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

\(1993\)

21608

\begin{align*} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

5.913

\(1994\)

21616

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

94.733

\(1995\)

21627

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.314

\(1996\)

21639

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.280

\(1997\)

21655

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y&=\frac {4 x^{2}+2 x +10}{x^{4}} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.744

\(1998\)

21684

\begin{align*} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.319

\(1999\)

21700

\begin{align*} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y&=4 \ln \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.038

\(2000\)

21701

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x -y&=-\ln \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.042

\(2001\)

21733

\begin{align*} y^{\prime }&=-\sqrt {1-y^{2}} \\ x^{\prime }&=x+2 y \\ \end{align*}

system_of_ODEs

0.033

\(2002\)

21734

\begin{align*} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 y x&=0 \\ \end{align*}

[NONE]

2.941

\(2003\)

21779

\begin{align*} x^{\prime }&=x+4 y-y^{2} \\ y^{\prime }&=6 x-y+2 x y \\ \end{align*}

system_of_ODEs

0.030

\(2004\)

21780

\begin{align*} x^{\prime }&=\sin \left (x\right )-4 y \\ y^{\prime }&=\sin \left (2 x\right )-5 y \\ \end{align*}

system_of_ODEs

0.030

\(2005\)

21781

\begin{align*} x^{\prime }&=8 x-y^{2} \\ y^{\prime }&=6 x^{2}-6 y \\ \end{align*}

system_of_ODEs

0.028

\(2006\)

21782

\begin{align*} x^{\prime }&=-x^{2}-y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.027

\(2007\)

21783

\begin{align*} x^{\prime }&=-x^{3}-y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.027

\(2008\)

21784

\begin{align*} x^{\prime }&=2 x y \\ y^{\prime }&=3 y^{2}-x^{2} \\ \end{align*}

system_of_ODEs

0.039

\(2009\)

21785

\begin{align*} x^{\prime }&=x^{2} \\ y^{\prime }&=2 y^{2}-x y \\ \end{align*}

system_of_ODEs

0.028

\(2010\)

21786

\begin{align*} x^{\prime }&=-x+y^{2} \\ y^{\prime }&=x^{2}-y \\ \end{align*}

system_of_ODEs

0.028

\(2011\)

21824

\begin{align*} -y+y^{\prime } x&=x^{2} \sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

37.740

\(2012\)

21839

\begin{align*} y^{3} \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}\right )^{3} y^{\prime } \\ \end{align*}

[_rational]

4.284

\(2013\)

21853

\begin{align*} a x y-b +\left (c x y-d \right ) x y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.579

\(2014\)

21895

\begin{align*} x^{\prime \prime }-x+y&={\mathrm e}^{t} \\ x^{\prime }+x-y^{\prime }-y&=3 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.052

\(2015\)

21899

\begin{align*} y^{\prime }+y-x^{\prime \prime }+x&={\mathrm e}^{t} \\ y^{\prime }-x^{\prime }+x&={\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.046

\(2016\)

21900

\begin{align*} 2 y^{\prime \prime \prime }+y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.043

\(2017\)

21925

\begin{align*} x^{\prime \prime }&=1 \\ x^{\prime }+x+y^{\prime \prime }-9 y+z^{\prime }+z&=0 \\ 5 x+z^{\prime \prime }-4 z&=2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.036

\(2018\)

21951

\begin{align*} s^{2} t^{\prime \prime }+s t t^{\prime }&=s \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.605

\(2019\)

21952

\begin{align*} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5}&=p \\ \end{align*}

0.137

\(2020\)

21954

\begin{align*} {y^{\prime \prime }}^{2}-3 y y^{\prime }+y x&=0 \\ \end{align*}

[NONE]

0.051

\(2021\)

21957

\begin{align*} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +\sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.051

\(2022\)

21958

\begin{align*} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

829.567

\(2023\)

21959

\begin{align*} {y^{\prime \prime }}^{{3}/{2}}+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.126

\(2024\)

21969

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.030

\(2025\)

21973

\begin{align*} y^{\prime }&=x \sin \left (y\right )+{\mathrm e}^{x} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.722

\(2026\)

21982

\begin{align*} 1+y x +y y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.043

\(2027\)

22077

\begin{align*} 2 y^{\prime \prime } x +x^{2} y^{\prime }-\sin \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.492

\(2028\)

22078

\begin{align*} y y^{\prime \prime \prime }+y^{\prime } x +y&=x^{2} \\ \end{align*}

[[_3rd_order, _exact, _nonlinear]]

0.027

\(2029\)

22081

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (x +1\right ) y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.079

\(2030\)

22085

\begin{align*} y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+y^{\prime \prime } x -{\mathrm e}^{x} y^{\prime }+2 y&=x^{2}+x +1 \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.039

\(2031\)

22086

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +y&=4 x y^{2} \\ \end{align*}

[NONE]

0.315

\(2032\)

22088

\begin{align*} y y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

63.295

\(2033\)

22089

\begin{align*} y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y&=5 \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.037

\(2034\)

22173

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.151

\(2035\)

22178

\begin{align*} x^{3} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.076

\(2036\)

22181

\begin{align*} \left (x +1\right )^{3} y^{\prime \prime }+\left (x^{2}-1\right ) \left (x +1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.123

\(2037\)

22257

\begin{align*} y^{\prime \prime }+z+y&=0 \\ y^{\prime }+z^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.015

\(2038\)

22258

\begin{align*} z^{\prime \prime }+y^{\prime }&=\cos \left (t \right ) \\ y^{\prime \prime }-z&=\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.021

\(2039\)

22259

\begin{align*} w^{\prime \prime }-y+2 z&=3 \,{\mathrm e}^{-t} \\ -2 w^{\prime }+2 y^{\prime }+z&=0 \\ 2 w^{\prime }-2 y+z^{\prime }+2 z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 2 \\ z \left (0\right ) &= 2 \\ z^{\prime }\left (0\right ) &= -2 \\ w \left (0\right ) &= 1 \\ w^{\prime }\left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.032

\(2040\)

22264

\begin{align*} u^{\prime \prime }-2 v&=2 \\ u+v^{\prime }&=5 \,{\mathrm e}^{2 t}+1 \\ \end{align*}
With initial conditions
\begin{align*} u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 2 \\ v \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.019

\(2041\)

22265

\begin{align*} w^{\prime \prime }-2 z&=0 \\ w^{\prime }+y^{\prime }-z&=2 t \\ w^{\prime }-2 y+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ z^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.029

\(2042\)

22266

\begin{align*} w^{\prime \prime }+y+z&=-1 \\ w+y^{\prime \prime }-z&=0 \\ -w-y^{\prime }+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 1 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.025

\(2043\)

22288

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.570

\(2044\)

22292

\begin{align*} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3}&=s-3 t \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.041

\(2045\)

22296

\begin{align*} y^{\prime \prime }+y x&=\sin \left (y^{\prime \prime }\right ) \\ \end{align*}

[NONE]

0.564

\(2046\)

22336

\begin{align*} {| y^{\prime }|}+1&=0 \\ \end{align*}

[_sym_implicit]

0.070

\(2047\)

22345

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_Riccati, _special]]

12.541

\(2048\)

22347

\begin{align*} y^{\prime }&=y \csc \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.563

\(2049\)

22348

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {x^{2}+4 y^{2}-4}} \\ y \left (3\right ) &= 2 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.353

\(2050\)

22376

\begin{align*} U^{\prime }&=\frac {U+1}{\sqrt {s}+\sqrt {s U}} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

40.056

\(2051\)

22473

\begin{align*} x^{3}+2 x y^{2}-x +\left (x^{2} y+2 y^{3}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.480

\(2052\)

22476

\begin{align*} x^{2}+y \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )-\left (x^{2}+x \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

25.151

\(2053\)

22597

\begin{align*} y^{\prime }&=\sqrt {y+\sin \left (x \right )}-\cos \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.108

\(2054\)

22770

\begin{align*} \left (r^{2}+r \right ) R^{\prime \prime }+r R^{\prime }-n \left (n +1\right ) R&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.697

\(2055\)

22799

\begin{align*} y^{\prime \prime \prime }&=\frac {24 x +24 y}{x^{3}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.027

\(2056\)

22800

\begin{align*} x y^{\prime \prime \prime }+2 y^{\prime \prime } x -y^{\prime } x -2 y x&=1 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.035

\(2057\)

22885

\begin{align*} y^{\prime \prime }&=x \\ y^{\prime \prime }&=y \\ \end{align*}

system_of_ODEs

0.019

\(2058\)

22886

\begin{align*} y^{\prime \prime }&=x-2 \\ y^{\prime \prime }&=2+y \\ \end{align*}

system_of_ODEs

0.022

\(2059\)

22890

\begin{align*} x^{\prime \prime }+2 y^{\prime }+8 x&=32 t \\ y^{\prime \prime }+3 x^{\prime }-2 y&=60 \,{\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 6 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= -24 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.026

\(2060\)

22892

\begin{align*} x^{\prime }+3 y^{\prime }&=x y \\ 3 x^{\prime }-y^{\prime }&=\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.033

\(2061\)

22893

\begin{align*} r^{\prime \prime }\left (t \right )&=r \left (t \right )+y \\ y^{\prime \prime }&=5 r \left (t \right )-3 y+t^{2} \\ \end{align*}

system_of_ODEs

0.023

\(2062\)

22894

\begin{align*} x y^{\prime }+y x^{\prime }&=t^{2} \\ 2 x^{\prime \prime }-y^{\prime }&=5 t \\ \end{align*}

system_of_ODEs

0.031

\(2063\)

22895

\begin{align*} x^{\prime \prime }+y^{\prime }+x&=y+\sin \left (t \right ) \\ y^{\prime \prime }+x^{\prime }-y&=2 t^{2}-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= -1 \\ y \left (0\right ) &= -{\frac {9}{2}} \\ y^{\prime }\left (0\right ) &= -{\frac {7}{2}} \\ \end{align*}

system_of_ODEs

0.024

\(2064\)

22897

\begin{align*} x^{\prime }&=y z \\ y^{\prime }&=x z \\ z^{\prime }&=x y \\ \end{align*}

system_of_ODEs

0.029

\(2065\)

22898

\begin{align*} x^{\prime }&=x y \\ y^{\prime }&=1+y^{2} \\ z^{\prime }&=z \\ \end{align*}

system_of_ODEs

0.029

\(2066\)

22899

\begin{align*} t^{2} y^{\prime \prime }+t z^{\prime }+z&=t \\ y^{\prime } t +z&=\ln \left (t \right ) \\ \end{align*}

system_of_ODEs

0.028

\(2067\)

22906

\begin{align*} x^{\prime \prime }&=-2 y \\ y^{\prime }&=y-x^{\prime } \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 10 \\ y \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.017

\(2068\)

22907

\begin{align*} y^{\prime \prime }&=x-2 \\ x^{\prime \prime }&=2+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.015

\(2069\)

22908

\begin{align*} x^{\prime }+y^{\prime }&=\cos \left (t \right ) \\ x+y^{\prime \prime }&=2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (\pi \right ) &= 2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

system_of_ODEs

0.016

\(2070\)

22911

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.020

\(2071\)

22929

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}

system_of_ODEs

0.026

\(2072\)

23093

\begin{align*} x^{\prime \prime }+y^{\prime \prime }&=t \\ x^{\prime \prime }-y^{\prime \prime }&=3 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.023

\(2073\)

23106

\begin{align*} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x}&=\frac {y^{3}}{x^{3}} \\ \end{align*}

[NONE]

0.537

\(2074\)

23133

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

11.744

\(2075\)

23141

\begin{align*} y y^{\prime }&=y+x^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.755

\(2076\)

23156

\begin{align*} y^{2} y^{\prime }+\tan \left (x \right ) y&=\sin \left (x \right )^{3} \\ \end{align*}

[‘y=_G(x,y’)‘]

11.677

\(2077\)

23188

\begin{align*} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[NONE]

52.081

\(2078\)

23207

\begin{align*} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

25.762

\(2079\)

23211

\begin{align*} y x +1+y^{2} y^{\prime }&=0 \\ \end{align*}

[_rational]

2.687

\(2080\)

23240

\begin{align*} y^{\prime \prime \prime }+x^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.030

\(2081\)

23241

\begin{align*} y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=5 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.035

\(2082\)

23246

\begin{align*} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

\(2083\)

23255

\begin{align*} x y^{\prime \prime \prime }+4 y^{\prime \prime } x -y x&=1 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.031

\(2084\)

23257

\begin{align*} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.885

\(2085\)

23278

\begin{align*} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.694

\(2086\)

23287

\begin{align*} y^{\prime \prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.462

\(2087\)

23289

\begin{align*} \left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.786

\(2088\)

23290

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +y&=2 \\ y \left (\frac {3 \pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {3 \pi }{4}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.161

\(2089\)

23291

\begin{align*} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y x&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 2 \\ y^{\prime \prime }\left (-1\right ) &= 2 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.085

\(2090\)

23294

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+3 y&=1 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.898

\(2091\)

23295

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.088

\(2092\)

23297

\begin{align*} 2 y^{\prime \prime } x -7 \cos \left (x \right ) y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.175

\(2093\)

23298

\begin{align*} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.252

\(2094\)

23299

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.030

\(2095\)

23300

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

156.558

\(2096\)

23365

\begin{align*} x^{\prime \prime }+y^{\prime }+6 x&=0 \\ y^{\prime \prime }-x^{\prime }+6 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.048

\(2097\)

23434

\begin{align*} y^{\prime \prime \prime }-\sin \left (x \right ) y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.039

\(2098\)

23436

\begin{align*} y^{\prime \prime \prime \prime }-\ln \left (x +1\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_high_order, _with_linear_symmetries]]

0.066

\(2099\)

23440

\begin{align*} y^{\prime \prime \prime }-3 x^{2} y^{\prime }+2 y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.043

\(2100\)

23441

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+2 y^{\prime }-x^{3} y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.039

\(2101\)

23446

\begin{align*} y^{\prime \prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _missing_x]]

0.021

\(2102\)

23451

\begin{align*} y^{\prime \prime \prime }-2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.024

\(2103\)

23469

\begin{align*} 3 x y^{\prime \prime \prime }-4 y x&=\cos \left (y\right ) \\ \end{align*}

[NONE]

0.038

\(2104\)

23472

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime } x +4 y&=x^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.040

\(2105\)

23552

\begin{align*} y^{\left (5\right )}-y^{\prime }-\frac {4 y}{x}&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.046

\(2106\)

23557

\begin{align*} x_{1}^{\prime }&=2 \sin \left (t \right ) x_{1}+\ln \left (t \right ) x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{-2+t}+\frac {{\mathrm e}^{t} x_{2}}{1+t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (3\right ) &= 0 \\ x_{2} \left (3\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.049

\(2107\)

23566

\begin{align*} x_{1}^{\prime }&=x_{1}+\left (1-t \right ) x_{2} \\ x_{2}^{\prime }&=\frac {x_{1}}{t}-x_{2} \\ \end{align*}

system_of_ODEs

0.037

\(2108\)

23575

\begin{align*} t x^{\prime }&=3 x-2 y \\ y^{\prime } t&=x+y-t^{2} \\ \end{align*}

system_of_ODEs

0.038

\(2109\)

23584

\begin{align*} t x^{\prime }&=3 x-2 y \\ y^{\prime } t&=x+y-t^{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (1\right ) &= 1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

system_of_ODEs

0.037

\(2110\)

23673

\begin{align*} x^{3} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.191

\(2111\)

23683

\begin{align*} x^{2} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.307

\(2112\)

23685

\begin{align*} x^{3} y^{\prime \prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.141

\(2113\)

23754

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= B \\ \end{align*}

[[_2nd_order, _missing_x]]

4.756

\(2114\)

23757

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.983

\(2115\)

23775

\begin{align*} x^{\prime }&=y^{2}-x^{2} \\ y^{\prime }&=2 x y \\ \end{align*}

system_of_ODEs

0.035

\(2116\)

23776

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-\sin \left (x\right ) \\ \end{align*}

system_of_ODEs

0.032

\(2117\)

23777

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-4 \sin \left (x\right ) \\ \end{align*}

system_of_ODEs

0.037

\(2118\)

23778

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.029

\(2119\)

23780

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=\sin \left (x_{1}\right ) \\ \end{align*}

system_of_ODEs

0.043

\(2120\)

23782

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{1}^{3} \\ \end{align*}

system_of_ODEs

0.054

\(2121\)

23796

\begin{align*} x^{\prime }&=5 x-6 y+x y \\ y^{\prime }&=6 x-7 y-x y \\ \end{align*}

system_of_ODEs

0.032

\(2122\)

23797

\begin{align*} x^{\prime }&=3 x-2 y+\left (x^{2}+y^{2}\right )^{2} \\ y^{\prime }&=4 x-y+\left (x^{2}-y^{2}\right )^{5} \\ \end{align*}

system_of_ODEs

0.034

\(2123\)

23798

\begin{align*} x^{\prime }&=y+x^{2}-x y \\ y^{\prime }&=-2 x+3 y+y^{2} \\ \end{align*}

system_of_ODEs

0.032

\(2124\)

23799

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.027

\(2125\)

23800

\begin{align*} x^{\prime }&=-x-x^{2}+y^{2} \\ y^{\prime }&=-y+2 x y \\ \end{align*}

system_of_ODEs

0.050

\(2126\)

23815

\begin{align*} x^{\prime }&=-2 x+y-x^{2}+2 y^{2} \\ y^{\prime }&=3 x+2 y+x^{2} y^{2} \\ \end{align*}

system_of_ODEs

0.039

\(2127\)

23816

\begin{align*} x^{\prime }&=-x+x^{2} \\ y^{\prime }&=-3 y+x y \\ \end{align*}

system_of_ODEs

0.030

\(2128\)

23817

\begin{align*} x^{\prime }&=-x+x y \\ y^{\prime }&=y+\left (x^{2}+y^{2}\right )^{2} \\ \end{align*}

system_of_ODEs

0.030

\(2129\)

23818

\begin{align*} x^{\prime }&=2 x+y^{2} \\ y^{\prime }&=3 y-x^{2} \\ \end{align*}

system_of_ODEs

0.037

\(2130\)

23819

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.036

\(2131\)

23860

\begin{align*} 2 x^{3} y+\left (2 y^{2} x^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

4.117

\(2132\)

23863

\begin{align*} x \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}+2 y^{2}\right )+y \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}-2 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

16.115

\(2133\)

23868

\begin{align*} y^{\prime }&=\frac {y x +3}{5 x -y} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.789

\(2134\)

23871

\begin{align*} y^{\prime }&=\frac {2 y x +3 y}{x^{2}+2 y^{2}} \\ \end{align*}

[_rational]

8.363

\(2135\)

23888

\begin{align*} \frac {8 x^{4} y+12 x^{3} y^{2}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\ \end{align*}

[_rational]

54.088

\(2136\)

23901

\begin{align*} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.441

\(2137\)

23904

\begin{align*} x^{3}+y^{2}+\left (y x -3 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

11.777

\(2138\)

23932

\begin{align*} y^{\prime }&=-2 \\ z^{\prime }&=x \,{\mathrm e}^{2 x +y} \\ \end{align*}

system_of_ODEs

0.033

\(2139\)

23935

\begin{align*} y y^{\prime }&=-x \\ y z^{\prime }&=2 \\ \end{align*}

system_of_ODEs

0.036

\(2140\)

23951

\begin{align*} y^{\prime } x&=y \\ z^{\prime }&=3 y-x \\ \end{align*}

system_of_ODEs

0.027

\(2141\)

24043

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.450

\(2142\)

24088

\begin{align*} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.036

\(2143\)

24089

\begin{align*} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _exact, _linear, _homogeneous]]

0.036

\(2144\)

24092

\begin{align*} x^{2} y^{\prime \prime \prime }-y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.036

\(2145\)

24093

\begin{align*} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{x +1}-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.039

\(2146\)

24094

\begin{align*} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{x +1}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.036

\(2147\)

24096

\begin{align*} x^{2} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.089

\(2148\)

24195

\begin{align*} x +\sin \left (y\right )-\cos \left (y\right )-x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

95.806

\(2149\)

24220

\begin{align*} y^{2} \left (-x^{2}+1\right )+x \left (y^{2} x^{2}+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

6.119

\(2150\)

24221

\begin{align*} y \left (y^{2} x^{2}-1\right )+x \left (x^{2} y+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

53.213

\(2151\)

24335

\begin{align*} y \left (x \tan \left (x \right )+\ln \left (y\right )\right )+\tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.339

\(2152\)

24399

\begin{align*} y^{\prime }&=\tan \left (y\right ) \cot \left (x \right )-\sec \left (y\right ) \cos \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

11.157

\(2153\)

24572

\begin{align*} y^{\prime \prime }+y&=x^{3} \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.465

\(2154\)

24803

\begin{align*} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

53.900

\(2155\)

25028

\begin{align*} y+2 t +2 t y y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.582

\(2156\)

25030

\begin{align*} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

0.964

\(2157\)

25086

\begin{align*} y^{\prime \prime }-y y^{\prime }&=6 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

24.308

\(2158\)

25144

\begin{align*} y^{\prime \prime \prime \prime }+y^{4}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.023

\(2159\)

25145

\begin{align*} y^{\left (5\right )}+t y^{\prime \prime }-3 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.038

\(2160\)

25169

\begin{align*} y_{1}^{\prime }-2 y_{1}&=2 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }+y_{2}&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 3 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.026

\(2161\)

25170

\begin{align*} y_{1}^{\prime }+4 y_{1}&=10 y_{2} \\ y_{2}^{\prime \prime }-6 y_{2}^{\prime }+23 y_{2}&=9 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 2 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.023

\(2162\)

25171

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-2 y_{2} \\ y_{2}^{\prime \prime }+y_{2}^{\prime }+6 y_{2}&=4 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 5 \\ y_{2}^{\prime }\left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.024

\(2163\)

25172

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}^{\prime }+6 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+6 y_{2}&=9 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 6 \\ y_{2}^{\prime }\left (0\right ) &= 6 \\ \end{align*}

system_of_ODEs

0.027

\(2164\)

25173

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -1 \\ y_{1}^{\prime }\left (0\right ) &= -4 \\ y_{2} \left (0\right ) &= 1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.027

\(2165\)

25176

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-y_{2} \\ y_{2}^{\prime \prime }-y_{2}^{\prime }+y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= -1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.023

\(2166\)

25177

\begin{align*} y_{1}^{\prime }+2 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+5 y_{2}&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.023

\(2167\)

25178

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 10 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 10 \\ y_{2}^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.025

\(2168\)

25182

\begin{align*} y^{\prime \prime }+y^{\prime } t +\left (t^{2}+1\right )^{2} y^{2}&=0 \\ \end{align*}

[NONE]

0.500

\(2169\)

25184

\begin{align*} y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.428

\(2170\)

25185

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.635

\(2171\)

25187

\begin{align*} y^{\prime \prime }+2 y+t \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.696

\(2172\)

25188

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.048

\(2173\)

25212

\begin{align*} \sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= y_{1} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.884

\(2174\)

25213

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-y^{\prime } t +t^{2} y&=\cos \left (t \right ) \\ y \left (0\right ) &= y_{1} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.048

\(2175\)

25214

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y&=0 \\ y \left (10\right ) &= y_{1} \\ y^{\prime }\left (10\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.005

\(2176\)

25215

\begin{align*} t \left (t^{2}-4\right ) y^{\prime \prime }+y&={\mathrm e}^{t} \\ y \left (1\right ) &= y_{1} \\ y^{\prime }\left (1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.911

\(2177\)

25217

\begin{align*} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.332

\(2178\)

25236

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.171

\(2179\)

25247

\begin{align*} t y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _exact, _linear, _homogeneous]]

0.027

\(2180\)

25261

\begin{align*} \left (\cos \left (2 t \right )+1\right ) y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.217

\(2181\)

25337

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{t}+\frac {\left (1-t \right ) y}{t^{3}}&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.125

\(2182\)

25358

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=y_{1} y_{2} \\ \end{align*}

system_of_ODEs

0.028

\(2183\)

25360

\begin{align*} y_{1}^{\prime }&=\sin \left (t \right ) y_{1} \\ y_{2}^{\prime }&=y_{1}+\cos \left (t \right ) y_{2} \\ \end{align*}

system_of_ODEs

0.034

\(2184\)

25361

\begin{align*} y_{1}^{\prime }&=t \sin \left (y_{1}\right )-y_{2} \\ y_{2}^{\prime }&=y_{1}+t \cos \left (y_{2}\right ) \\ \end{align*}

system_of_ODEs

0.040

\(2185\)

25387

\begin{align*} y_{1}^{\prime }&=y_{2} t \\ y_{2}^{\prime }&=-y_{1} t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.037

\(2186\)

25388

\begin{align*} y_{1}^{\prime }&=y_{1} t +y_{2} t \\ y_{2}^{\prime }&=-y_{1} t -y_{2} t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 4 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.039

\(2187\)

25389

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{t}+y_{2} \\ y_{2}^{\prime }&=-y_{1}+\frac {y_{2}}{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (\pi \right ) &= 1 \\ y_{2} \left (\pi \right ) &= -1 \\ \end{align*}

system_of_ODEs

0.040

\(2188\)

25390

\begin{align*} y_{1}^{\prime }&=\left (2 t +1\right ) y_{1}+2 y_{2} t \\ y_{2}^{\prime }&=-2 y_{1} t +\left (1-2 t \right ) y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.041

\(2189\)

25391

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2} \\ y_{2}^{\prime }&=\frac {y_{1}}{t}+\frac {y_{2}}{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= -3 \\ y_{2} \left (1\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.037

\(2190\)

25392

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{t}+1 \\ y_{2}^{\prime }&=\frac {y_{2}}{t}+t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 1 \\ y_{2} \left (1\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.036

\(2191\)

25393

\begin{align*} y_{1}^{\prime }&=-\frac {y_{2}}{t}+1 \\ y_{2}^{\prime }&=\frac {y_{1}}{t}+\frac {2 y_{2}}{t}-1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 2 \\ y_{2} \left (1\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.039

\(2192\)

25394

\begin{align*} y_{1}^{\prime }&=\frac {4 t y_{1}}{t^{2}+1}+\frac {6 y_{2} t}{t^{2}+1}-3 t \\ y_{2}^{\prime }&=-\frac {2 t y_{1}}{t^{2}+1}-\frac {4 y_{2} t}{t^{2}+1}+t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 1 \\ y_{2} \left (1\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.046

\(2193\)

25395

\begin{align*} y_{1}^{\prime }&=3 \sec \left (t \right ) y_{1}+5 \sec \left (t \right ) y_{2} \\ y_{2}^{\prime }&=-\sec \left (t \right ) y_{1}-3 \sec \left (t \right ) y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.044

\(2194\)

25396

\begin{align*} y_{1}^{\prime }&=y_{1} t +y_{2} t +4 t \\ y_{2}^{\prime }&=-y_{1} t -y_{2} t +4 t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 4 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.040

\(2195\)

25648

\begin{align*} \left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

10.152

\(2196\)

25649

\begin{align*} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\ \end{align*}

[NONE]

0.037

\(2197\)

25650

\begin{align*} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.049

\(2198\)

25651

\begin{align*} u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\ \end{align*}

[NONE]

1.778

\(2199\)

25654

\begin{align*} \sin \left (t \right ) y^{\prime \prime \prime }-\cos \left (t \right ) y^{\prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.892

\(2200\)

25655

\begin{align*} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

36.095

\(2201\)

25688

\begin{align*} x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\ y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.038

\(2202\)

25728

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.987

\(2203\)

25729

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y^{\prime }\left (\frac {\pi }{3}\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.812

\(2204\)

25748

\begin{align*} y^{\prime }&=6 \sqrt {y}+5 x^{3} \\ y \left (-1\right ) &= 4 \\ \end{align*}

[_Chini]

5.005

\(2205\)

25750

\begin{align*} y^{\prime \prime }+y \sec \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.833

\(2206\)

25769

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_Riccati]

12.371

\(2207\)

25771

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (-6\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.148

\(2208\)

25772

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.373

\(2209\)

25773

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.373

\(2210\)

25774

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (8\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.406

\(2211\)

25800

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

25.797