2.1.2 Problems not solved. First order only

Table 2.3: Problems not solved. First order only. [617]

#

ID

ODE

CAS classification

Maple

Mma

Sympy

time(sec)

\(1\)

36

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

6.262

\(2\)

39

\begin{align*} y^{\prime }&=x^{2}+y^{2}-1 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

45.768

\(3\)

529

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

16.096

\(4\)

783

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+x^{2} y^{4} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.312

\(5\)

1135

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.769

\(6\)

1200

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

8.040

\(7\)

1203

\begin{align*} x \ln \left (x \right )+y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

9.362

\(8\)

1608

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{\sin \left (x \right )} \\ \end{align*}

[_Riccati]

12.157

\(9\)

1609

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x}+y}{x^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.193

\(10\)

1610

\begin{align*} y^{\prime }&=\tan \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.069

\(11\)

1611

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{\ln \left (y x \right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

8.737

\(12\)

1612

\begin{align*} y^{\prime }&=\left (x^{2}+y^{2}\right ) y^{{1}/{3}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.736

\(13\)

1614

\begin{align*} y^{\prime }&=\ln \left (1+x^{2}+y^{2}\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.581

\(14\)

1616

\begin{align*} y^{\prime }&=\sqrt {x^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.658

\(15\)

1618

\begin{align*} y^{\prime }&=\left (x^{2}+y^{2}\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.135

\(16\)

1689

\begin{align*} 2 x^{2}+8 y x +y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

3.234

\(17\)

1691

\begin{align*} y \sin \left (y x \right )+x y^{2} \cos \left (y x \right )+\left (x \sin \left (y x \right )+x y^{2} \cos \left (y x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.681

\(18\)

2346

\begin{align*} y^{\prime }&=y^{2}+\cos \left (t^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

67.116

\(19\)

2347

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

11.002

\(20\)

2349

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

68.148

\(21\)

2350

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_Riccati]

65.867

\(22\)

2351

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

80.920

\(23\)

2352

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.026

\(24\)

2353

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

[_Abel]

0.753

\(25\)

2355

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.183

\(26\)

2356

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.202

\(27\)

2514

\begin{align*} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘x=_G(y,y’)‘]

62.806

\(28\)

2519

\begin{align*} y^{\prime }&=t^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

7.855

\(29\)

2522

\begin{align*} y^{\prime }&=1+y+y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

10.286

\(30\)

2524

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

70.018

\(31\)

2525

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_Riccati]

80.147

\(32\)

2526

\begin{align*} y^{\prime }&={\mathrm e}^{-t^{2}}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Riccati]

67.868

\(33\)

2527

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.835

\(34\)

2528

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

[_Abel]

0.868

\(35\)

2530

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.020

\(36\)

2531

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.059

\(37\)

2537

\begin{align*} y^{\prime }&=y+{\mathrm e}^{-y}+2 t \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.077

\(38\)

2539

\begin{align*} y^{\prime }&=\frac {t^{2}+y^{2}}{1+t +y^{2}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_rational]

1.670

\(39\)

2923

\begin{align*} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

57.472

\(40\)

2955

\begin{align*} y-x^{2} \sqrt {x^{2}-y^{2}}-y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

84.755

\(41\)

3002

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=x \left (-x^{2}+1\right ) \sqrt {y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_rational, _Bernoulli]

5.237

\(42\)

3286

\begin{align*} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 x^{2} y {y^{\prime }}^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.931

\(43\)

3289

\begin{align*} x y {y^{\prime }}^{2}+\left (y x -1\right ) y^{\prime }&=y \\ \end{align*}

[‘y=_G(x,y’)‘]

27.927

\(44\)

3677

\begin{align*} y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2}&=r \left (x \right ) \\ \end{align*}

[_Riccati]

11.171

\(45\)

3683

\begin{align*} y \,{\mathrm e}^{y x}+\left (2 y-x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

3.791

\(46\)

4078

\begin{align*} y^{2} \left (x^{2}+1\right )+y+\left (2 y x +1\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.731

\(47\)

4252

\begin{align*} 2 y^{2}-4 x +5&=\left (4-2 y+4 y x \right ) y^{\prime } \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16.155

\(48\)

4353

\begin{align*} x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.193

\(49\)

4673

\begin{align*} y^{\prime }&=f \left (x \right )+a y+b y^{2} \\ \end{align*}

[_Riccati]

3.547

\(50\)

4675

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+a y^{2} \\ \end{align*}

[_Riccati]

4.707

\(51\)

4688

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \\ \end{align*}

[_Riccati]

9.277

\(52\)

4690

\begin{align*} y^{\prime }+\left (a x +y\right ) y^{2}&=0 \\ \end{align*}

[_Abel]

6.646

\(53\)

4691

\begin{align*} y^{\prime }&=\left (a \,{\mathrm e}^{x}+y\right ) y^{2} \\ \end{align*}

[_Abel]

5.415

\(54\)

4692

\begin{align*} y^{\prime }+3 a \left (2 x +y\right ) y^{2}&=0 \\ \end{align*}

[_Abel]

6.795

\(55\)

4705

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \\ \end{align*}

[_Chini]

3.398

\(56\)

4718

\begin{align*} y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

7.278

\(57\)

4726

\begin{align*} y^{\prime }&=\tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

8.586

\(58\)

4731

\begin{align*} y^{\prime }&=\left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

6.426

\(59\)

4738

\begin{align*} y^{\prime }&=x^{m -1} y^{1-n} f \left (a \,x^{m}+b y^{n}\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.485

\(60\)

4744

\begin{align*} 2 y^{\prime }&=2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

135.833

\(61\)

4809

\begin{align*} y^{\prime } x&=y-x \left (x -y\right ) \sqrt {x^{2}+y^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.926

\(62\)

4820

\begin{align*} y^{\prime } x&=\sin \left (x -y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

5.086

\(63\)

4832

\begin{align*} y^{\prime } x +n y&=f \left (x \right ) g \left (x^{n} y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.483

\(64\)

4887

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}-a y^{3} \\ \end{align*}

[_rational, _Abel]

5.247

\(65\)

4888

\begin{align*} x^{2} y^{\prime }+a y^{2}+b \,x^{2} y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

6.464

\(66\)

4891

\begin{align*} x^{2} y^{\prime }&=\sec \left (y\right )+3 x \tan \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

18.727

\(67\)

4919

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=n \left (1-2 y x +y^{2}\right ) \\ \end{align*}

[_rational, _Riccati]

1.845

\(68\)

4922

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2}-2 x y \left (1+y^{2}\right ) \\ \end{align*}

[_rational, _Abel]

132.893

\(69\)

4923

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )&=x \left (x^{2}+1\right ) \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

10.467

\(70\)

4966

\begin{align*} \left (b x +a \right )^{2} y^{\prime }+c y^{2}+\left (b x +a \right ) y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

19.181

\(71\)

5003

\begin{align*} x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

58.840

\(72\)

5009

\begin{align*} x^{k} y^{\prime }&=a \,x^{m}+b y^{n} \\ \end{align*}

[_Chini]

5.048

\(73\)

5037

\begin{align*} y y^{\prime }+x^{3}+y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.607

\(74\)

5040

\begin{align*} y y^{\prime }+f \left (x \right )&=g \left (x \right ) y \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

6.835

\(75\)

5049

\begin{align*} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right )&=0 \\ \end{align*}

[NONE]

5.749

\(76\)

5109

\begin{align*} \left (x +4 x^{3}+5 y\right ) y^{\prime }+7 x^{3}+3 x^{2} y+4 y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

25.538

\(77\)

5142

\begin{align*} x \left (a +y\right ) y^{\prime }+b x +c y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13.319

\(78\)

5149

\begin{align*} \left (a +x \left (x +y\right )\right ) y^{\prime }&=b \left (x +y\right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

24.105

\(79\)

5181

\begin{align*} \left (1-x^{2} y\right ) y^{\prime }-1+x y^{2}&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

117.400

\(80\)

5205

\begin{align*} x^{7} y y^{\prime }&=2 x^{2}+2+5 x^{3} y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

61.361

\(81\)

5224

\begin{align*} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2}&=0 \\ \end{align*}

[_rational]

4.733

\(82\)

5238

\begin{align*} \left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime }&=y^{3} \csc \left (x \right ) \sec \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

101.859

\(83\)

5295

\begin{align*} \left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right )&=0 \\ \end{align*}

[_rational]

4.197

\(84\)

5300

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\ \end{align*}

[_rational]

4.319

\(85\)

5332

\begin{align*} f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{m +1}+h \left (x \right ) y^{n}&=0 \\ \end{align*}

[_Bernoulli]

6.849

\(86\)

5376

\begin{align*} {y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

16.783

\(87\)

5513

\begin{align*} x^{2} {y^{\prime }}^{2}+x \left (x^{2}+y x -2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y&=0 \\ \end{align*}

[_rational]

155.714

\(88\)

5532

\begin{align*} x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right )&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

52.367

\(89\)

5600

\begin{align*} x y^{2} {y^{\prime }}^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

[_rational]

32.490

\(90\)

5606

\begin{align*} 9 \left (-x^{2}+1\right ) y^{4} {y^{\prime }}^{2}+6 x y^{5} y^{\prime }+4 x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

30.364

\(91\)

5655

\begin{align*} x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3}&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

510.927

\(92\)

5664

\begin{align*} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

271.173

\(93\)

5665

\begin{align*} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

61.298

\(94\)

5681

\begin{align*} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right )&=a^{2} \\ \end{align*}

[_rational]

20.156

\(95\)

7008

\begin{align*} \left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime }&=y-x^{2} \sqrt {x^{2}-y^{2}} \\ \end{align*}

[NONE]

88.807

\(96\)

7146

\begin{align*} y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\ \end{align*}

[_Abel]

11.135

\(97\)

7147

\begin{align*} x^{2} y^{\prime }+x y^{3}+a y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

5.893

\(98\)

7148

\begin{align*} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

14.794

\(99\)

7382

\begin{align*} s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.889

\(100\)

7385

\begin{align*} s^{2}+s^{\prime }&=\frac {s+1}{s t} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9.163

\(101\)

7419

\begin{align*} x^{\prime }+t x&={\mathrm e}^{x} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.986

\(102\)

7422

\begin{align*} x x^{\prime }+t^{2} x&=\sin \left (t \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

173.666

\(103\)

7440

\begin{align*} y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}}&=x \\ y \left (0\right ) &= 2 \\ \end{align*}

[_linear]

16.029

\(104\)

7472

\begin{align*} 5 x^{2} y+6 x^{3} y^{2}+4 x y^{2}+\left (2 x^{3}+3 x^{4} y+3 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

25.911

\(105\)

7488

\begin{align*} 2 x +2 y+2 x^{3} y+4 y^{2} x^{2}+\left (2 x +x^{4}+2 x^{3} y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.051

\(106\)

7533

\begin{align*} 1+\frac {1}{1+x^{2}+4 y x +y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 y x +y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

83.207

\(107\)

7547

\begin{align*} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[NONE]

145.401

\(108\)

7938

\begin{align*} 4 x^{2} y y^{\prime }&=3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \\ \end{align*}

[_rational]

18.145

\(109\)

8159

\begin{align*} \sin \left (x^{\prime }\right )+y^{3} x&=\sin \left (y \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

25.527

\(110\)

8253

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

12.109

\(111\)

8270

\begin{align*} y^{\prime }&=6 \sqrt {y}+5 x^{3} \\ y \left (-1\right ) &= 4 \\ \end{align*}

[_Chini]

1.917

\(112\)

8291

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_Riccati]

7.405

\(113\)

8293

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (-6\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.030

\(114\)

8294

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.562

\(115\)

8295

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.569

\(116\)

8296

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (8\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.583

\(117\)

8471

\begin{align*} y^{\prime } x -4 y&=x^{6} {\mathrm e}^{x} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_linear]

2.557

\(118\)

9112

\begin{align*} x \ln \left (x \right ) y^{\prime }+y&=3 x^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

0.360

\(119\)

9128

\begin{align*} 2 y^{2}-4 x +5&=\left (4-2 y+4 y x \right ) y^{\prime } \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

20.236

\(120\)

9492

\begin{align*} y^{\prime }&=y+x \,{\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

8.418

\(121\)

10005

\begin{align*} y^{\prime }&=\sqrt {1-x^{2}-y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.572

\(122\)

10195

\begin{align*} {y^{\prime }}^{2}+y^{2}&=\sec \left (x \right )^{4} \\ \end{align*}

[‘y=_G(x,y’)‘]

82.002

\(123\)

10258

\begin{align*} y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.887

\(124\)

10287

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\ \end{align*}

[_Riccati]

6.500

\(125\)

11335

\begin{align*} y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )}&=0 \\ \end{align*}

[_Riccati]

7.904

\(126\)

11338

\begin{align*} y^{\prime }+y^{3}+a x y^{2}&=0 \\ \end{align*}

[_Abel]

21.215

\(127\)

11339

\begin{align*} y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2}&=0 \\ \end{align*}

[_Abel]

8.173

\(128\)

11342

\begin{align*} y^{\prime }+3 a y^{3}+6 a x y^{2}&=0 \\ \end{align*}

[_Abel]

11.547

\(129\)

11344

\begin{align*} y^{\prime }-x \left (2+x \right ) y^{3}-\left (x +3\right ) y^{2}&=0 \\ \end{align*}

[_Abel]

9.562

\(130\)

11345

\begin{align*} y^{\prime }+\left (4 a^{2} x +3 a \,x^{2}+b \right ) y^{3}+3 x y^{2}&=0 \\ \end{align*}

[_Abel]

16.995

\(131\)

11347

\begin{align*} y^{\prime }+2 \left (a^{2} x^{3}-b^{2} x \right ) y^{3}+3 b y^{2}&=0 \\ \end{align*}

[_Abel]

11.431

\(132\)

11349

\begin{align*} y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2}&=0 \\ \end{align*}

[_Abel]

44.231

\(133\)

11350

\begin{align*} y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2}&=0 \\ \end{align*}

[_Abel]

45.793

\(134\)

11351

\begin{align*} y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right )&=0 \\ \end{align*}

[_Abel]

7.769

\(135\)

11352

\begin{align*} y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )}&=0 \\ \end{align*}

[_Abel]

10.061

\(136\)

11356

\begin{align*} y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right )&=0 \\ \end{align*}

[_Chini]

5.382

\(137\)

11357

\begin{align*} y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b}&=0 \\ \end{align*}

[NONE]

4.674

\(138\)

11363

\begin{align*} y^{\prime }-\frac {y-x^{2} \sqrt {x^{2}-y^{2}}}{x y \sqrt {x^{2}-y^{2}}+x}&=0 \\ \end{align*}

[NONE]

40.180

\(139\)

11366

\begin{align*} y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

23.569

\(140\)

11375

\begin{align*} y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

9.234

\(141\)

11380

\begin{align*} y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

4.712

\(142\)

11381

\begin{align*} y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.650

\(143\)

11382

\begin{align*} y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

3.160

\(144\)

11383

\begin{align*} y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.135

\(145\)

11384

\begin{align*} y^{\prime }-\tan \left (y x \right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.328

\(146\)

11386

\begin{align*} y^{\prime }-x^{-1+a} y^{1-b} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.341

\(147\)

11388

\begin{align*} 2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x}&=0 \\ \end{align*}

[_Riccati]

39.089

\(148\)

11411

\begin{align*} y^{\prime } x +y^{3}+3 x y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

12.213

\(149\)

11415

\begin{align*} y^{\prime } x -x \left (-x +y\right ) \sqrt {x^{2}+y^{2}}-y&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.628

\(150\)

11420

\begin{align*} y^{\prime } x -\sin \left (x -y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

6.327

\(151\)

11427

\begin{align*} y^{\prime } x +a y-f \left (x \right ) g \left (x^{a} y\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.936

\(152\)

11444

\begin{align*} x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

7.724

\(153\)

11445

\begin{align*} x^{2} y^{\prime }+x y^{3}+a y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

15.881

\(154\)

11446

\begin{align*} x^{2} y^{\prime }+y^{3} a \,x^{2}+b y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

9.360

\(155\)

11450

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 y x -1\right )&=0 \\ \end{align*}

[_rational, _Abel]

67.729

\(156\)

11451

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.801

\(157\)

11456

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+a \left (1-2 y x +y^{2}\right )&=0 \\ \end{align*}

[_rational, _Riccati]

6.514

\(158\)

11468

\begin{align*} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2}&=0 \\ \end{align*}

[_rational, _Abel]

21.740

\(159\)

11484

\begin{align*} x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3}&=0 \\ \end{align*}

[_rational, _Abel]

30.431

\(160\)

11501

\begin{align*} y y^{\prime }+x^{3}+y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.005

\(161\)

11503

\begin{align*} y y^{\prime }+a y+\frac {\left (a^{2}-1\right ) x}{4}+b \,x^{n}&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

110.644

\(162\)

11504

\begin{align*} y y^{\prime }+a y+b \,{\mathrm e}^{x}-2 a&=0 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

19.380

\(163\)

11510

\begin{align*} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right )&=0 \\ \end{align*}

[NONE]

6.548

\(164\)

11531

\begin{align*} y y^{\prime } x -y^{2}+y x +x^{3}-2 x^{2}&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

33.756

\(165\)

11534

\begin{align*} x \left (a +y\right ) y^{\prime }+b y+c x&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

23.341

\(166\)

11548

\begin{align*} \left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

67.051

\(167\)

11549

\begin{align*} \left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

76.274

\(168\)

11553

\begin{align*} x \left (y x +x^{4}-1\right ) y^{\prime }-y \left (y x -x^{4}-1\right )&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

35.551

\(169\)

11561

\begin{align*} \left (-x +y\right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}}&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

273.131

\(170\)

11573

\begin{align*} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2}&=0 \\ \end{align*}

[_rational]

12.166

\(171\)

11606

\begin{align*} \left (\frac {y^{2}}{b}+\frac {x^{2}}{a}\right ) \left (y y^{\prime }+x \right )+\frac {\left (a -b \right ) \left (y y^{\prime }-x \right )}{a +b}&=0 \\ \end{align*}

[_rational]

11.591

\(172\)

11607

\begin{align*} \left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3}&=0 \\ \end{align*}

[_rational]

10.148

\(173\)

11643

\begin{align*} y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

44.971

\(174\)

11644

\begin{align*} y^{\prime } \cos \left (y\right )+x \sin \left (y\right ) \cos \left (y\right )^{2}-\sin \left (y\right )^{3}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

63.739

\(175\)

11650

\begin{align*} x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

65.995

\(176\)

11740

\begin{align*} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

101.598

\(177\)

11744

\begin{align*} x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

58.881

\(178\)

11748

\begin{align*} \left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

147.262

\(179\)

11767

\begin{align*} \left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2}&=0 \\ \end{align*}

[_rational]

19.806

\(180\)

11769

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-y x&=0 \\ \end{align*}

[_rational]

31.524

\(181\)

11776

\begin{align*} y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x +a y^{2}+b x +c&=0 \\ \end{align*}

[_rational]

70.948

\(182\)

11788

\begin{align*} \left (a y^{2}+b x +c \right ) {y^{\prime }}^{2}-b y y^{\prime }+d y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

174.924

\(183\)

11790

\begin{align*} x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

[_rational]

58.264

\(184\)

11792

\begin{align*} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (-x +y\right ) y^{\prime }-y^{2} \left (x^{2} y-1\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

44.530

\(185\)

11793

\begin{align*} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

64.126

\(186\)

11794

\begin{align*} \left (y^{4}+y^{2} x^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x -y^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

135.281

\(187\)

11795

\begin{align*} 9 y^{4} \left (x^{2}-1\right ) {y^{\prime }}^{2}-6 x y^{5} y^{\prime }-4 x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

36.860

\(188\)

11796

\begin{align*} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (y^{2}-x^{2}\right ) y^{\prime }-y^{2} \left (y^{2} x^{4}-1\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

30.306

\(189\)

11797

\begin{align*} \left (a^{2} \sqrt {x^{2}+y^{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a^{2} \sqrt {x^{2}+y^{2}}-y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

171.739

\(190\)

11798

\begin{align*} \left (a \left (x^{2}+y^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a \left (x^{2}+y^{2}\right )^{{3}/{2}}-y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

134.908

\(191\)

11801

\begin{align*} f \left (x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

70.013

\(192\)

11817

\begin{align*} {y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

56.059

\(193\)

11829

\begin{align*} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

218.277

\(194\)

11840

\begin{align*} x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

20.105

\(195\)

11845

\begin{align*} y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.119

\(196\)

11846

\begin{align*} a y \sqrt {1+{y^{\prime }}^{2}}-2 y y^{\prime } x +y^{2}-x^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

267.316

\(197\)

11847

\begin{align*} f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

85.413

\(198\)

11857

\begin{align*} a \,x^{n} f \left (y^{\prime }\right )+y^{\prime } x -y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.414

\(199\)

11858

\begin{align*} f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.720

\(200\)

11859

\begin{align*} f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.968

\(201\)

11864

\begin{align*} y^{\prime }&=\frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

7.980

\(202\)

11865

\begin{align*} y^{\prime }&=\frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.051

\(203\)

11866

\begin{align*} y^{\prime }&=-\frac {\left (a \,x^{2}-2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

7.983

\(204\)

11868

\begin{align*} y^{\prime }&=F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

19.962

\(205\)

11869

\begin{align*} y^{\prime }&=\frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.850

\(206\)

11870

\begin{align*} y^{\prime }&=\frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10.498

\(207\)

11874

\begin{align*} y^{\prime }&=\frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.380

\(208\)

11875

\begin{align*} y^{\prime }&=\frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

11.641

\(209\)

11876

\begin{align*} y^{\prime }&=\frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.601

\(210\)

11877

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.406

\(211\)

11878

\begin{align*} y^{\prime }&=\frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

12.104

\(212\)

11884

\begin{align*} y^{\prime }&=\frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.083

\(213\)

11885

\begin{align*} y^{\prime }&=\frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \\ \end{align*}

[NONE]

9.165

\(214\)

11886

\begin{align*} y^{\prime }&=\frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.259

\(215\)

11887

\begin{align*} y^{\prime }&=\frac {2 y^{3}}{1+2 F \left (\frac {1+4 x y^{2}}{y^{2}}\right ) y} \\ \end{align*}

[‘x=_G(y,y’)‘]

7.974

\(216\)

11889

\begin{align*} y^{\prime }&=-\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9.899

\(217\)

11900

\begin{align*} y^{\prime }&=\frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

12.019

\(218\)

11901

\begin{align*} y^{\prime }&=\frac {\left (1+y\right ) \left (\left (y-\ln \left (1+y\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \\ \end{align*}

[‘y=_G(x,y’)‘]

19.647

\(219\)

11902

\begin{align*} y^{\prime }&=\frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

9.166

\(220\)

11908

\begin{align*} y^{\prime }&=\frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.145

\(221\)

11909

\begin{align*} y^{\prime }&=\frac {x}{y+\sqrt {x^{2}+1}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

71.332

\(222\)

11917

\begin{align*} y^{\prime }&=\frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

55.192

\(223\)

11921

\begin{align*} y^{\prime }&=-\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \\ \end{align*}

[‘x=_G(y,y’)‘]

16.421

\(224\)

11922

\begin{align*} y^{\prime }&=\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \\ \end{align*}

[‘y=_G(x,y’)‘]

16.798

\(225\)

11923

\begin{align*} y^{\prime }&=\frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \\ \end{align*}

[‘y=_G(x,y’)‘]

21.949

\(226\)

11924

\begin{align*} y^{\prime }&=\frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

34.161

\(227\)

11925

\begin{align*} y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{2}}{y} \\ \end{align*}

[_rational]

9.513

\(228\)

11927

\begin{align*} y^{\prime }&=-\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

31.865

\(229\)

11930

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.868

\(230\)

11931

\begin{align*} y^{\prime }&=-\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

24.016

\(231\)

11935

\begin{align*} y^{\prime }&=\frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

59.503

\(232\)

11946

\begin{align*} y^{\prime }&=\frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

37.138

\(233\)

11948

\begin{align*} y^{\prime }&=-\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.498

\(234\)

11952

\begin{align*} y^{\prime }&=\frac {\left (-2 y^{{3}/{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14.421

\(235\)

11953

\begin{align*} y^{\prime }&=\frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

20.082

\(236\)

11954

\begin{align*} y^{\prime }&=\frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \\ \end{align*}

[_rational]

9.722

\(237\)

11955

\begin{align*} y^{\prime }&=\frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

73.390

\(238\)

11959

\begin{align*} y^{\prime }&=\frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16.809

\(239\)

11961

\begin{align*} y^{\prime }&=\frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

22.589

\(240\)

11967

\begin{align*} y^{\prime }&=\frac {y+x^{2} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.950

\(241\)

11973

\begin{align*} y^{\prime }&=\frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4 x +4} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

20.767

\(242\)

11975

\begin{align*} y^{\prime }&=\frac {y+x^{3} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.336

\(243\)

11977

\begin{align*} y^{\prime }&=\frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17.932

\(244\)

11982

\begin{align*} y^{\prime }&=\frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3 x +3} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

22.451

\(245\)

11989

\begin{align*} y^{\prime }&=-\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right ) x \left (1+y\right )^{2}}{8} \\ \end{align*}

[‘y=_G(x,y’)‘]

67.592

\(246\)

11990

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (-1+y\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right )^{2} x \left (1+y\right )^{2}}{16} \\ \end{align*}

[‘x=_G(y,y’)‘]

58.883

\(247\)

11991

\begin{align*} y^{\prime }&=\frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \\ \end{align*}

[_rational]

11.059

\(248\)

11992

\begin{align*} y^{\prime }&=\frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (x +1\right ) y} \\ \end{align*}

[‘y=_G(x,y’)‘]

43.423

\(249\)

11993

\begin{align*} y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

57.256

\(250\)

11994

\begin{align*} y^{\prime }&=\frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

21.626

\(251\)

11997

\begin{align*} y^{\prime }&=\frac {-x^{2}+x +2+2 x^{3} \sqrt {x^{2}-4 x +4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

23.845

\(252\)

11998

\begin{align*} y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \\ \end{align*}

[_rational]

59.937

\(253\)

12002

\begin{align*} y^{\prime }&=\frac {x^{3} \left (3 x +3+\sqrt {9 x^{4}-4 y^{3}}\right )}{\left (x +1\right ) y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

28.096

\(254\)

12012

\begin{align*} y^{\prime }&=\frac {\left (2 y^{{3}/{2}}-3 \,{\mathrm e}^{x}\right )^{3} {\mathrm e}^{x}}{4 \left (2 y^{{3}/{2}}-3 \,{\mathrm e}^{x}+2\right ) \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.970

\(255\)

12014

\begin{align*} y^{\prime }&=\frac {-x^{2}-x -a x -a +2 x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 x +2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10.141

\(256\)

12016

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{3}\right ) y}{x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.265

\(257\)

12023

\begin{align*} y^{\prime }&=\frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{{5}/{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.785

\(258\)

12024

\begin{align*} y^{\prime }&=-\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

96.595

\(259\)

12025

\begin{align*} y^{\prime }&=-\frac {i \left (8 i x +16 y^{4}+8 y^{2} x^{2}+x^{4}\right )}{32 y} \\ \end{align*}

[_rational]

0.706

\(260\)

12028

\begin{align*} y^{\prime }&=-\frac {i \left (i x +x^{4}+2 y^{2} x^{2}+y^{4}\right )}{y} \\ \end{align*}

[_rational]

0.635

\(261\)

12031

\begin{align*} y^{\prime }&=\frac {\left (x -y\right )^{2} \left (x +y\right )^{2} x}{y} \\ \end{align*}

[_rational]

4.231

\(262\)

12034

\begin{align*} y^{\prime }&=\frac {\cos \left (y\right ) \left (\cos \left (y\right ) x^{3}-x -1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

42.875

\(263\)

12035

\begin{align*} y^{\prime }&=\frac {\left (x +1+x^{4} \ln \left (y\right )\right ) y \ln \left (y\right )}{x \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

6.020

\(264\)

12040

\begin{align*} y^{\prime }&=\frac {\left (2 x +2+x^{3} y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

6.680

\(265\)

12041

\begin{align*} y^{\prime }&=-\frac {i \left (54 i x^{2}+81 y^{4}+18 y^{2} x^{4}+x^{8}\right ) x}{243 y} \\ \end{align*}

[_rational]

0.768

\(266\)

12042

\begin{align*} y^{\prime }&=\frac {\left (x y^{2}+1\right )^{3}}{x^{4} \left (x y^{2}+1+x \right ) y} \\ \end{align*}

[_rational]

6.605

\(267\)

12044

\begin{align*} y^{\prime }&=-\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-x \right ) y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

22.959

\(268\)

12046

\begin{align*} y^{\prime }&=\frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.123

\(269\)

12051

\begin{align*} y^{\prime }&=-\frac {i \left (16 i x^{2}+16 y^{4}+8 y^{2} x^{4}+x^{8}\right ) x}{32 y} \\ \end{align*}

[_rational]

0.750

\(270\)

12054

\begin{align*} y^{\prime }&=\frac {\left (x +1+\ln \left (y\right ) x \right ) \ln \left (y\right ) y}{x \left (x +1\right )} \\ \end{align*}

[‘x=_G(y,y’)‘]

21.117

\(271\)

12062

\begin{align*} y^{\prime }&=\frac {y x +y+x \sqrt {x^{2}+y^{2}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.941

\(272\)

12078

\begin{align*} y^{\prime }&=\frac {y^{3} x \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+3 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+9 y} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class C‘]]

43.714

\(273\)

12084

\begin{align*} y^{\prime }&=-\frac {-\frac {1}{x}-\textit {\_F1} \left (y+\frac {1}{x}\right )}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

6.798

\(274\)

12085

\begin{align*} y^{\prime }&=\frac {\textit {\_F1} \left (y^{2}-2 \ln \left (x \right )\right )}{\sqrt {y^{2}}\, x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.837

\(275\)

12086

\begin{align*} y^{\prime }&=\frac {-x \sin \left (2 y\right )-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{4}+x^{4}}{2 x \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

13.477

\(276\)

12087

\begin{align*} y^{\prime }&=\frac {y x +y+x^{4} \sqrt {x^{2}+y^{2}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.206

\(277\)

12088

\begin{align*} y^{\prime }&=\frac {-x \sin \left (2 y\right )-\sin \left (2 y\right )+x \cos \left (2 y\right )+x}{2 x \left (x +1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

78.919

\(278\)

12089

\begin{align*} y^{\prime }&=-\frac {1}{-x -\textit {\_F1} \left (y-\ln \left (x \right )\right ) y \,{\mathrm e}^{y}} \\ \end{align*}

[NONE]

7.731

\(279\)

12093

\begin{align*} y^{\prime }&=\frac {x^{3} {\mathrm e}^{y}+x^{4}+{\mathrm e}^{y} y-{\mathrm e}^{y} \ln \left ({\mathrm e}^{y}+x \right )+y x -\ln \left ({\mathrm e}^{y}+x \right ) x +x}{x^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

45.898

\(280\)

12094

\begin{align*} y^{\prime }&=\frac {x^{2}}{2}+\sqrt {x^{3}-6 y}+x^{2} \sqrt {x^{3}-6 y}+x^{3} \sqrt {x^{3}-6 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

52.799

\(281\)

12095

\begin{align*} y^{\prime }&=\frac {\left (-\sqrt {a}\, x^{3}+2 \sqrt {a \,x^{4}+8 y}+2 x^{2} \sqrt {a \,x^{4}+8 y}+2 x^{3} \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

55.975

\(282\)

12097

\begin{align*} y^{\prime }&=\frac {\left (3+y\right )^{3} {\mathrm e}^{\frac {9 x^{2}}{2}} x \,{\mathrm e}^{\frac {3 x^{2}}{2}} {\mathrm e}^{-3 x^{2}}}{243 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+81 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+243 y} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class C‘]]

58.216

\(283\)

12098

\begin{align*} y^{\prime }&=\frac {\left (x -y\right )^{3} \left (x +y\right )^{3} x}{\left (-y^{2}+x^{2}-1\right ) y} \\ \end{align*}

[_rational]

12.450

\(284\)

12099

\begin{align*} y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{3} \cos \left (2 y\right ) \ln \left (x \right )+x^{3} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \\ \end{align*}

[‘y=_G(x,y’)‘]

14.194

\(285\)

12101

\begin{align*} y^{\prime }&=-\frac {2 x}{3}+\sqrt {x^{2}+3 y}+x^{2} \sqrt {x^{2}+3 y}+x^{3} \sqrt {x^{2}+3 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

44.576

\(286\)

12102

\begin{align*} y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{2} \cos \left (2 y\right ) \ln \left (x \right )+x^{2} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \\ \end{align*}

[‘y=_G(x,y’)‘]

13.274

\(287\)

12107

\begin{align*} y^{\prime }&=\frac {\left (\left (x^{2}+1\right )^{{3}/{2}} x^{2}+\left (x^{2}+1\right )^{{3}/{2}}+y^{2} \left (x^{2}+1\right )^{{3}/{2}}+x^{2} y^{3}+y^{3}\right ) x}{\left (x^{2}+1\right )^{3}} \\ \end{align*}

[_Abel]

64.852

\(288\)

12108

\begin{align*} y^{\prime }&=\frac {\left (3 x y^{2}+x +3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

34.135

\(289\)

12109

\begin{align*} y^{\prime }&=-\frac {-y+x^{3} \sqrt {x^{2}+y^{2}}-x^{2} \sqrt {x^{2}+y^{2}}\, y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13.620

\(290\)

12111

\begin{align*} y^{\prime }&=\frac {1+2 \sqrt {4 x^{2} y+1}\, x^{3}+2 x^{5} \sqrt {4 x^{2} y+1}+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.063

\(291\)

12113

\begin{align*} y^{\prime }&=\frac {2 a +\sqrt {-y^{2}+4 a x}+x^{2} \sqrt {-y^{2}+4 a x}+x^{3} \sqrt {-y^{2}+4 a x}}{y} \\ \end{align*}

[‘y=_G(x,y’)‘]

65.386

\(292\)

12115

\begin{align*} y^{\prime }&=-\frac {-y+x^{4} \sqrt {x^{2}+y^{2}}-x^{3} \sqrt {x^{2}+y^{2}}\, y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.549

\(293\)

12116

\begin{align*} y^{\prime }&=\frac {\left (x^{4}+3 x y^{2}+3 y^{2}\right ) y}{\left (x +6 y^{2}\right ) x \left (x +1\right )} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.847

\(294\)

12117

\begin{align*} y^{\prime }&=-\frac {1}{-\left (y^{3}\right )^{{2}/{3}} x -\textit {\_F1} \left (y^{3}-3 \ln \left (x \right )\right ) \left (y^{3}\right )^{{1}/{3}} x} \\ \end{align*}

[NONE]

5.394

\(295\)

12122

\begin{align*} y^{\prime }&=\frac {b \,x^{3}+c^{2} \sqrt {a}-2 c b \,x^{2} \sqrt {a}+2 c y^{2} a^{{3}/{2}}+b^{2} x^{4} \sqrt {a}-2 y^{2} a^{{3}/{2}} b \,x^{2}+a^{{5}/{2}} y^{4}}{a \,x^{2} y} \\ \end{align*}

[_rational]

17.375

\(296\)

12126

\begin{align*} y^{\prime }&=\frac {3 x^{3}+\sqrt {-9 x^{4}+4 y^{3}}+x^{2} \sqrt {-9 x^{4}+4 y^{3}}+x^{3} \sqrt {-9 x^{4}+4 y^{3}}}{y^{2}} \\ \end{align*}

[NONE]

20.255

\(297\)

12127

\begin{align*} y^{\prime }&=\frac {1}{-x +\left (\frac {1}{y}+1\right ) x +\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2}-\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2} \left (\frac {1}{y}+1\right )} \\ \end{align*}

[‘y=_G(x,y’)‘]

9.516

\(298\)

12128

\begin{align*} y^{\prime }&=\frac {x}{2}+\frac {1}{2}+\sqrt {x^{2}+2 x +1-4 y}+x^{2} \sqrt {x^{2}+2 x +1-4 y}+x^{3} \sqrt {x^{2}+2 x +1-4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

43.459

\(299\)

12129

\begin{align*} y^{\prime }&=\frac {\cosh \left (x \right )}{\sinh \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sinh \left (x \right )\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

13.368

\(300\)

12130

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+\sqrt {x^{2}-4 x +4 y}+x^{2} \sqrt {x^{2}-4 x +4 y}+x^{3} \sqrt {x^{2}-4 x +4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

44.345

\(301\)

12131

\begin{align*} y^{\prime }&=\frac {1}{\sin \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sin \left (x \right )\right )+\ln \left (\cos \left (x \right )+1\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

20.097

\(302\)

12135

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x^{2} \ln \left (x \right )^{2}+2 x^{2} \ln \left (y\right ) \ln \left (x \right )+x^{2} \ln \left (y\right )^{2}\right )}{x} \\ \end{align*}

[NONE]

17.721

\(303\)

12136

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right )-1+\ln \left (x \right )+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}\right )}{x} \\ \end{align*}

[NONE]

17.650

\(304\)

12137

\begin{align*} y^{\prime }&=-\frac {\left (-\frac {1}{x}-\textit {\_F1} \left (y^{2}-2 x \right )\right ) x}{\sqrt {y^{2}}} \\ \end{align*}

[NONE]

8.165

\(305\)

12138

\begin{align*} y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+\sqrt {x^{2}-2 x +1+8 y}+x^{2} \sqrt {x^{2}-2 x +1+8 y}+x^{3} \sqrt {x^{2}-2 x +1+8 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

44.681

\(306\)

12140

\begin{align*} y^{\prime }&=-\frac {-x -\textit {\_F1} \left (y^{2}-2 x \right )}{\sqrt {y^{2}}\, x} \\ \end{align*}

[NONE]

8.746

\(307\)

12142

\begin{align*} y^{\prime }&=-\frac {\left (-\frac {y \,{\mathrm e}^{\frac {1}{x}}}{x}-\textit {\_F1} \left (y \,{\mathrm e}^{\frac {1}{x}}\right )\right ) {\mathrm e}^{-\frac {1}{x}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.332

\(308\)

12143

\begin{align*} y^{\prime }&=\frac {y+x \sqrt {x^{2}+y^{2}}+x^{3} \sqrt {x^{2}+y^{2}}+x^{4} \sqrt {x^{2}+y^{2}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.912

\(309\)

12145

\begin{align*} y^{\prime }&=\left (\frac {\ln \left (-1+y\right ) y}{\left (1-y\right ) \ln \left (x \right ) x}-\frac {\ln \left (-1+y\right )}{\left (1-y\right ) \ln \left (x \right ) x}-f \left (x \right )\right ) \left (1-y\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16.283

\(310\)

12146

\begin{align*} y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+\sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

49.426

\(311\)

12150

\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x +x +x^{3}+x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.893

\(312\)

12155

\begin{align*} y^{\prime }&=-\frac {-y x -y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

27.336

\(313\)

12158

\begin{align*} y^{\prime }&=\frac {1+y^{4}-8 a x y^{2}+16 a^{2} x^{2}+y^{6}-12 y^{4} a x +48 y^{2} a^{2} x^{2}-64 a^{3} x^{3}}{y} \\ \end{align*}

[_rational]

18.059

\(314\)

12159

\begin{align*} y^{\prime }&=-\frac {-y x -y+x^{2} \sqrt {x^{2}+y^{2}}-x \sqrt {x^{2}+y^{2}}\, y}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

25.824

\(315\)

12163

\begin{align*} y^{\prime }&=\frac {\left (a^{3}+a^{3} y^{4}+2 a^{2} y^{2} b \,x^{2}+b^{2} x^{4} a +y^{6} a^{3}+3 y^{4} a^{2} b \,x^{2}+3 y^{2} a \,b^{2} x^{4}+b^{3} x^{6}\right ) x}{a^{{7}/{2}} y} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

24.708

\(316\)

12164

\begin{align*} y^{\prime }&=-\frac {\left (-1-y^{4}+2 y^{2} x^{2}-x^{4}-y^{6}+3 x^{2} y^{4}-3 y^{2} x^{4}+x^{6}\right ) x}{y} \\ \end{align*}

[_rational]

17.862

\(317\)

12165

\begin{align*} y^{\prime }&=-\frac {i \left (32 i x +64+64 y^{4}+32 y^{2} x^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 y^{2} x^{4}+x^{6}\right )}{128 y} \\ \end{align*}

[_rational]

2.421

\(318\)

12169

\begin{align*} y^{\prime }&=-\frac {\left (-8-8 y^{3}+24 y^{{3}/{2}} {\mathrm e}^{x}-18 \,{\mathrm e}^{2 x}-8 y^{{9}/{2}}+36 y^{3} {\mathrm e}^{x}-54 \,{\mathrm e}^{2 x} y^{{3}/{2}}+27 \,{\mathrm e}^{3 x}\right ) {\mathrm e}^{x}}{8 \sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

64.298

\(319\)

12174

\begin{align*} y^{\prime }&=-\frac {i \left (i x +1+x^{4}+2 y^{2} x^{2}+y^{4}+x^{6}+3 y^{2} x^{4}+3 x^{2} y^{4}+y^{6}\right )}{y} \\ \end{align*}

[_rational]

2.242

\(320\)

12189

\begin{align*} y^{\prime }&=\frac {x^{3}+y^{4} x^{3}+2 y^{2} x^{2}+x +x^{3} y^{6}+3 x^{2} y^{4}+3 x y^{2}+1}{x^{5} y} \\ \end{align*}

[_rational]

19.411

\(321\)

12196

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )+\ln \left (x \right )+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \\ \end{align*}

[NONE]

30.178

\(322\)

12197

\begin{align*} y^{\prime }&=\frac {y \left (x \ln \left (x \right )+\ln \left (x \right )+\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \\ \end{align*}

[NONE]

30.419

\(323\)

12208

\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x \right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

20.801

\(324\)

12210

\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.415

\(325\)

12232

\begin{align*} y^{\prime }&=-\frac {-y+x^{2} \sqrt {x^{2}+y^{2}}-x \sqrt {x^{2}+y^{2}}\, y+x^{4} \sqrt {x^{2}+y^{2}}-x^{3} \sqrt {x^{2}+y^{2}}\, y+x^{5} \sqrt {x^{2}+y^{2}}-x^{4} \sqrt {x^{2}+y^{2}}\, y}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

19.999

\(326\)

12233

\begin{align*} y^{\prime }&=\frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x} \\ \end{align*}

[NONE]

11.077

\(327\)

12236

\begin{align*} y^{\prime }&=\frac {y \left (-1-x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2}-x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} \ln \left (x \right )+x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y+2 x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y \ln \left (x \right )+x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y \ln \left (x \right )^{2}\right )}{\left (1+\ln \left (x \right )\right ) x} \\ \end{align*}

[_Bernoulli]

13.234

\(328\)

12237

\begin{align*} y^{\prime }&=\frac {y \left (-1-x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}}-x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} \ln \left (x \right )+x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y+2 x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y \ln \left (x \right )+x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y \ln \left (x \right )^{2}\right )}{\left (1+\ln \left (x \right )\right ) x} \\ \end{align*}

[_Bernoulli]

13.035

\(329\)

12264

\begin{align*} y^{\prime }&=\frac {y \left (y^{2} x^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

15.217

\(330\)

13253

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{2}+b x \right ) y+\alpha \,x^{2}+\beta x +\gamma \\ \end{align*}

[_rational, _Riccati]

30.799

\(331\)

13256

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \\ \end{align*}

[_rational, _Riccati]

25.765

\(332\)

13258

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\lambda \left (1-2 y x +y^{2}\right )&=0 \\ \end{align*}

[_rational, _Riccati]

1.505

\(333\)

13260

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime }+\alpha y^{2}+\beta x y+\gamma &=0 \\ \end{align*}

[_rational, _Riccati]

538.798

\(334\)

13269

\begin{align*} x^{3} y^{\prime }&=a \,x^{3} y^{2}+x \left (b x +c \right ) y+x \alpha +\beta \\ \end{align*}

[_rational, _Riccati]

24.248

\(335\)

13283

\begin{align*} y^{\prime }&=\sigma y^{2}+a +b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

4.749

\(336\)

13287

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{2 \lambda x} \left ({\mathrm e}^{\lambda x}+b \right )^{n}-\frac {\lambda ^{2}}{4} \\ \end{align*}

[_Riccati]

40.002

\(337\)

13295

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\mu x} y^{2}+a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x} y-b \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

29.698

\(338\)

13309

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

5.882

\(339\)

13311

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \\ \end{align*}

[_Riccati]

11.288

\(340\)

13333

\begin{align*} y^{\prime }&=a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \\ \end{align*}

[_Riccati]

36.181

\(341\)

13336

\begin{align*} y^{\prime }&=y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

5.969

\(342\)

13337

\begin{align*} y^{\prime }&=y^{2}+3 a \lambda -\lambda ^{2}-a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

72.067

\(343\)

13340

\begin{align*} y^{\prime }&=y^{2}+a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

5.894

\(344\)

13341

\begin{align*} y^{\prime }&=y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

42.036

\(345\)

13389

\begin{align*} y^{\prime }&=y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

3.898

\(346\)

13390

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

102.448

\(347\)

13397

\begin{align*} y^{\prime }&=a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

113.246

\(348\)

13400

\begin{align*} y^{\prime }&=y^{2}+a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

4.278

\(349\)

13401

\begin{align*} y^{\prime }&=y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

49.026

\(350\)

13402

\begin{align*} y^{\prime }&=y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2} \\ \end{align*}

[_Riccati]

43.068

\(351\)

13406

\begin{align*} y^{\prime }&=a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

127.190

\(352\)

13410

\begin{align*} y^{\prime }&=a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n} \\ \end{align*}

[_Riccati]

41.365

\(353\)

13417

\begin{align*} y^{\prime }&=y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \\ \end{align*}

[_Riccati]

49.560

\(354\)

13425

\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

53.438

\(355\)

13433

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

58.923

\(356\)

13440

\begin{align*} y^{\prime }&=\lambda \arctan \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

40.563

\(357\)

13447

\begin{align*} y^{\prime }&=\lambda \operatorname {arccot}\left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

78.325

\(358\)

13469

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

118.092

\(359\)

13470

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \coth \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

121.240

\(360\)

13471

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

31.015

\(361\)

13472

\begin{align*} y^{\prime } x&=f \left (x \right ) y^{2}+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \\ \end{align*}

[_Riccati]

17.478

\(362\)

13473

\begin{align*} y^{\prime } x&=f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

20.625

\(363\)

13474

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \\ \end{align*}

[_Riccati]

24.651

\(364\)

13477

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

33.429

\(365\)

13478

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \\ \end{align*}

[_Riccati]

35.549

\(366\)

13479

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

114.484

\(367\)

13480

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\ \end{align*}

[_Riccati]

115.431

\(368\)

13485

\begin{align*} y^{\prime }&=\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \\ \end{align*}

[_Riccati]

6.681

\(369\)

13486

\begin{align*} f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right )&=0 \\ \end{align*}

[_Riccati]

45.162

\(370\)

13490

\begin{align*} y^{\prime }&=y^{2}+a^{2} f \left (a x +b \right ) \\ \end{align*}

[_Riccati]

3.867

\(371\)

13491

\begin{align*} y^{\prime }&=y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \\ \end{align*}

[_Riccati]

4.782

\(372\)

13492

\begin{align*} x^{2} y^{\prime }&=x^{4} f \left (x \right ) y^{2}+1 \\ \end{align*}

[_Riccati]

5.761

\(373\)

13493

\begin{align*} x^{2} y^{\prime }&=y^{2} x^{4}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \\ \end{align*}

[_Riccati]

48.125

\(374\)

13494

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+g \left (x \right ) y+h \left (x \right ) \\ \end{align*}

[_Riccati]

9.795

\(375\)

13495

\begin{align*} x^{2} y^{\prime }&=y^{2} x^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \\ \end{align*}

[_Riccati]

16.620

\(376\)

13498

\begin{align*} y y^{\prime }-y&=-\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

140.005

\(377\)

13499

\begin{align*} y y^{\prime }-y&=2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

77.933

\(378\)

13500

\begin{align*} y y^{\prime }-y&=A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

28.949

\(379\)

13501

\begin{align*} y y^{\prime }-y&=\frac {A}{x}-\frac {A^{2}}{x^{3}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

24.958

\(380\)

13502

\begin{align*} y y^{\prime }-y&=A +B \,{\mathrm e}^{-\frac {2 x}{A}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

27.368

\(381\)

13503

\begin{align*} y y^{\prime }-y&=A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

31.161

\(382\)

13504

\begin{align*} y y^{\prime }-y&=-\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

92.159

\(383\)

13505

\begin{align*} y y^{\prime }-y&=\frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.944

\(384\)

13506

\begin{align*} y y^{\prime }-y&=\frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

43.268

\(385\)

13507

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

89.396

\(386\)

13508

\begin{align*} y y^{\prime }-y&=\frac {A}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

23.589

\(387\)

13509

\begin{align*} y y^{\prime }-y&=-\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

127.716

\(388\)

13510

\begin{align*} y y^{\prime }-y&=\frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

45.800

\(389\)

13512

\begin{align*} y y^{\prime }-y&=\frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

111.288

\(390\)

13513

\begin{align*} y y^{\prime }-y&=-\frac {4 x}{25}+\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

75.835

\(391\)

13514

\begin{align*} y y^{\prime }-y&=-\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

101.915

\(392\)

13515

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

133.770

\(393\)

13516

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

146.654

\(394\)

13517

\begin{align*} y y^{\prime }-y&=-\frac {2 x}{9}+\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

48.046

\(395\)

13518

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

133.897

\(396\)

13519

\begin{align*} y y^{\prime }-y&=-\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

125.942

\(397\)

13520

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

85.275

\(398\)

13521

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

137.419

\(399\)

13522

\begin{align*} y y^{\prime }-y&=\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

53.495

\(400\)

13524

\begin{align*} y y^{\prime }-y&=A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (n +1\right ) \left (n +3\right ) A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

285.062

\(401\)

13525

\begin{align*} y y^{\prime }-y&=A \left (n +2\right ) \left (\sqrt {x}+2 \left (n +2\right ) A +\frac {\left (2 n +3\right ) A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

206.632

\(402\)

13526

\begin{align*} y y^{\prime }-y&=A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

114.529

\(403\)

13527

\begin{align*} y y^{\prime }-y&=2 A^{2}-A \sqrt {x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

56.460

\(404\)

13528

\begin{align*} y y^{\prime }-y&=-\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

92.880

\(405\)

13529

\begin{align*} y y^{\prime }-y&=-\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

105.031

\(406\)

13530

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

72.380

\(407\)

13531

\begin{align*} y y^{\prime }-y&=\frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

110.289

\(408\)

13532

\begin{align*} y y^{\prime }-y&=A \,x^{2}-\frac {9}{625 A} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

33.029

\(409\)

13533

\begin{align*} y y^{\prime }-y&=-\frac {6}{25} x -A \,x^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

50.898

\(410\)

13534

\begin{align*} y y^{\prime }-y&=\frac {6}{25} x -A \,x^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

51.166

\(411\)

13536

\begin{align*} y y^{\prime }-y&=\frac {63 x}{4}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

98.519

\(412\)

13537

\begin{align*} y y^{\prime }-y&=2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

114.001

\(413\)

13538

\begin{align*} y y^{\prime }-y&=2 x +2 A \left (-10 \sqrt {x}+19 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

115.034

\(414\)

13539

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

138.899

\(415\)

13540

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+A \sqrt {x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

75.151

\(416\)

13542

\begin{align*} y y^{\prime }-y&=20 x +\frac {A}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

46.137

\(417\)

13544

\begin{align*} y y^{\prime }-y&=-\frac {10 x}{49}+\frac {2 A \left (4 \sqrt {x}+61 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

119.269

\(418\)

13545

\begin{align*} y y^{\prime }-y&=-\frac {12 x}{49}+\frac {2 A \left (\sqrt {x}+166 A +\frac {55 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

155.015

\(419\)

13546

\begin{align*} y y^{\prime }-y&=-\frac {4 x}{25}+\frac {A \left (7 \sqrt {x}+49 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{50} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

136.362

\(420\)

13547

\begin{align*} y y^{\prime }-y&=\frac {15 x}{4}+\frac {6 A}{x^{{1}/{3}}}-\frac {3 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

78.111

\(421\)

13548

\begin{align*} y y^{\prime }-y&=-\frac {3 x}{16}+\frac {A}{x^{{1}/{3}}}+\frac {B}{x^{{5}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

124.393

\(422\)

13549

\begin{align*} y y^{\prime }-y&=\frac {k}{\sqrt {A \,x^{2}+B x +c}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

79.433

\(423\)

13550

\begin{align*} y y^{\prime }-y&=-\frac {6 x}{25}+\frac {4 B^{2} \left (\left (2-A \right ) x^{{1}/{3}}-\frac {3 B \left (2 A +1\right )}{2}+\frac {B^{2} \left (1-3 A \right )}{x^{{1}/{3}}}-\frac {A \,B^{3}}{x^{{2}/{3}}}\right )}{75} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

626.570

\(424\)

13551

\begin{align*} y y^{\prime }-y&=a x +b \,x^{m} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

58.210

\(425\)

13552

\begin{align*} y y^{\prime }-y&=a^{2} \lambda \,{\mathrm e}^{2 \lambda x}-a \left (b \lambda +1\right ) {\mathrm e}^{\lambda x}+b \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

63.132

\(426\)

13553

\begin{align*} y y^{\prime }-y&=a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

10.718

\(427\)

13554

\begin{align*} y y^{\prime }&=\left (a x +b \right ) y+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15.897

\(428\)

13555

\begin{align*} y y^{\prime }&=\frac {y}{\left (a x +b \right )^{2}}+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19.542

\(429\)

13556

\begin{align*} y y^{\prime }&=\left (a -\frac {1}{a x}\right ) y+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

21.882

\(430\)

13558

\begin{align*} y y^{\prime }&=\frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

59.869

\(431\)

13559

\begin{align*} y y^{\prime }&=\left (\frac {a}{x^{{2}/{3}}}-\frac {2}{3 a \,x^{{1}/{3}}}\right ) y+1 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

74.824

\(432\)

13560

\begin{align*} y y^{\prime }&=a \,{\mathrm e}^{\lambda x} y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

12.006

\(433\)

13561

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{-\lambda x}\right ) y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

20.058

\(434\)

13562

\begin{align*} y y^{\prime }&=a y \cosh \left (x \right )+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

69.177

\(435\)

13563

\begin{align*} y y^{\prime }&=a \cos \left (\lambda x \right ) y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

23.344

\(436\)

13564

\begin{align*} y y^{\prime }&=a \sin \left (\lambda x \right ) y+1 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

27.040

\(437\)

13565

\begin{align*} y y^{\prime }&=\left (a x +3 b \right ) y+c \,x^{3}-b \,x^{2} a -2 b^{2} x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

45.551

\(438\)

13567

\begin{align*} 2 y y^{\prime }&=\left (7 a x +5 b \right ) y-3 a^{2} x^{3}-2 c \,x^{2}-3 b^{2} x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

45.455

\(439\)

13568

\begin{align*} y y^{\prime }&=\left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

55.187

\(440\)

13569

\begin{align*} y y^{\prime }+x \left (a \,x^{2}+b \right ) y+x&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.271

\(441\)

13570

\begin{align*} y y^{\prime }+a \left (1-\frac {1}{x}\right ) y&=a^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.177

\(442\)

13571

\begin{align*} y y^{\prime }-a \left (1-\frac {b}{x}\right ) y&=a^{2} b \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

21.762

\(443\)

13572

\begin{align*} y y^{\prime }&=x^{n -1} \left (\left (2 n +1\right ) x +a n \right ) y-n \,x^{2 n} \left (a +x \right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

112.969

\(444\)

13573

\begin{align*} y y^{\prime }&=a \left (-n b +x \right ) x^{n -1} y+c \left (x^{2}-\left (2 n +1\right ) b x +n \left (n +1\right ) b^{2}\right ) x^{2 n -1} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

238.775

\(445\)

13574

\begin{align*} y y^{\prime }-\frac {a \left (x \left (m -1\right )+1\right ) y}{x}&=\frac {a^{2} \left (x m +1\right ) \left (x -1\right )}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

28.741

\(446\)

13575

\begin{align*} y y^{\prime }-a \left (1-\frac {b}{\sqrt {x}}\right ) y&=\frac {a^{2} b}{\sqrt {x}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55.093

\(447\)

13577

\begin{align*} y y^{\prime }+\frac {a \left (6 x -1\right ) y}{2 x}&=-\frac {a^{2} \left (x -1\right ) \left (4 x -1\right )}{2 x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

24.874

\(448\)

13578

\begin{align*} y y^{\prime }-\frac {a \left (1+\frac {2 b}{x^{2}}\right ) y}{2}&=\frac {a^{2} \left (3 x +\frac {4 b}{x}\right )}{16} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

41.035

\(449\)

13579

\begin{align*} y y^{\prime }+\frac {a \left (13 x -18\right ) y}{15 x^{{7}/{5}}}&=-\frac {4 a^{2} \left (x -1\right ) \left (x -6\right )}{15 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

83.901

\(450\)

13580

\begin{align*} y y^{\prime }+\frac {a \left (5 x +1\right ) y}{2 \sqrt {x}}&=a^{2} \left (-x^{2}+1\right ) \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

91.809

\(451\)

13581

\begin{align*} y y^{\prime }+\frac {a \left (7 x -12\right ) y}{10 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (x -16\right )}{10 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

79.707

\(452\)

13582

\begin{align*} y y^{\prime }+\frac {3 a \left (13 x -8\right ) y}{20 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (27 x -32\right )}{20 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

84.536

\(453\)

13583

\begin{align*} y y^{\prime }-\frac {a \left (x +1\right ) y}{2 x^{{7}/{4}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +5\right )}{4 x^{{5}/{2}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

109.665

\(454\)

13584

\begin{align*} y y^{\prime }-\frac {a \left (4 x +3\right ) y}{14 x^{{8}/{7}}}&=-\frac {a^{2} \left (x -1\right ) \left (16 x +5\right )}{14 x^{{9}/{7}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

106.616

\(455\)

13585

\begin{align*} y y^{\prime }+\frac {a \left (13 x -3\right ) y}{6 x^{{2}/{3}}}&=-\frac {a^{2} \left (x -1\right ) \left (5 x -1\right )}{6 x^{{1}/{3}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191.432

\(456\)

13586

\begin{align*} y y^{\prime }-\frac {a \left (5 x -4\right ) y}{x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (3 x -1\right )}{x^{7}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55.449

\(457\)

13587

\begin{align*} y y^{\prime }-\frac {2 a \left (3 x -10\right ) y}{5 x^{4}}&=\frac {a^{2} \left (x -1\right ) \left (8 x -5\right )}{5 x^{7}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

55.194

\(458\)

13588

\begin{align*} y y^{\prime }+\frac {a \left (39 x -4\right ) y}{42 x^{{9}/{7}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -1\right )}{42 x^{{11}/{7}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

130.854

\(459\)

13589

\begin{align*} y y^{\prime }+\frac {a \left (x -2\right ) y}{x}&=\frac {2 a^{2} \left (x -1\right )}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

30.679

\(460\)

13590

\begin{align*} y y^{\prime }+\frac {a \left (3 x -2\right ) y}{x}&=-\frac {2 a^{2} \left (x -1\right )^{2}}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.316

\(461\)

13591

\begin{align*} y y^{\prime }+\frac {a \left (1-\frac {b}{x^{2}}\right ) y}{x}&=\frac {a^{2} b}{x} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.384

\(462\)

13592

\begin{align*} y y^{\prime }-\frac {a \left (3 x -4\right ) y}{4 x^{{5}/{2}}}&=\frac {a^{2} \left (x -1\right ) \left (2+x \right )}{4 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

94.750

\(463\)

13593

\begin{align*} y y^{\prime }+\frac {a \left (33 x +2\right ) y}{30 x^{{6}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -4\right )}{30 x^{{7}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

94.047

\(464\)

13594

\begin{align*} y y^{\prime }-\frac {a \left (x -8\right ) y}{8 x^{{5}/{2}}}&=-\frac {a^{2} \left (x -1\right ) \left (3 x -4\right )}{8 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

94.151

\(465\)

13595

\begin{align*} y y^{\prime }-\frac {a \left (6 x -13\right ) y}{13 x^{{5}/{2}}}&=-\frac {a^{2} \left (x -1\right ) \left (x -13\right )}{26 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

97.091

\(466\)

13596

\begin{align*} y y^{\prime }-\frac {2 a \left (3 x +2\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (8 x +1\right )}{5 x^{{11}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

93.090

\(467\)

13597

\begin{align*} y y^{\prime }-\frac {6 a \left (4 x +1\right ) y}{5 x^{{7}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (27 x +8\right )}{5 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

95.858

\(468\)

13598

\begin{align*} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{3}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

83.000

\(469\)

13599

\begin{align*} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{11}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

100.345

\(470\)

13600

\begin{align*} y y^{\prime }-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}}&=\frac {a^{2} \left (x -1\right ) \left (1+3 x \right )}{2 x^{4}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

97.990

\(471\)

13601

\begin{align*} y y^{\prime }+\frac {a \left (x -6\right ) y}{5 x^{{7}/{5}}}&=\frac {2 a^{2} \left (x -1\right ) \left (x +4\right )}{5 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

86.568

\(472\)

13602

\begin{align*} y y^{\prime }-\frac {3 a y}{x^{{7}/{4}}}&=\frac {a^{2} \left (x -1\right ) \left (x -9\right )}{4 x^{{5}/{2}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

134.566

\(473\)

13603

\begin{align*} y y^{\prime }-\frac {a \left (\left (1+k \right ) x -1\right ) y}{x^{2}}&=\frac {a^{2} \left (1+k \right ) \left (x -1\right )}{x^{2}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

73.225

\(474\)

13604

\begin{align*} y y^{\prime }-\left (\left (2 n -1\right ) x -a n \right ) x^{-1-n} y&=n \left (x -a \right ) x^{-2 n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

183.363

\(475\)

13605

\begin{align*} y y^{\prime }-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y&=-\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

201.517

\(476\)

13606

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

67.855

\(477\)

13607

\begin{align*} y y^{\prime }&=\left (a \,{\mathrm e}^{\lambda x}+b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

170.944

\(478\)

13608

\begin{align*} y y^{\prime }&={\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

228.966

\(479\)

13609

\begin{align*} y y^{\prime }&={\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

128.497

\(480\)

13610

\begin{align*} y y^{\prime }+a \left (2 b x +1\right ) {\mathrm e}^{b x} y&=-a^{2} b \,x^{2} {\mathrm e}^{2 b x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

23.566

\(481\)

13611

\begin{align*} y y^{\prime }-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y&=-a^{2} n \left (n +1\right ) \left (x n +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

85.739

\(482\)

13612

\begin{align*} y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y&=-a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

59.392

\(483\)

13613

\begin{align*} y y^{\prime }&=\left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

31.111

\(484\)

13614

\begin{align*} y y^{\prime }&=\left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

49.222

\(485\)

13615

\begin{align*} y y^{\prime }&=a x \cos \left (\lambda \,x^{2}\right ) y+x \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

21.785

\(486\)

13619

\begin{align*} y y^{\prime } x&=a y^{2}+b y+c \,x^{n}+s \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

56.951

\(487\)

13620

\begin{align*} y y^{\prime } x&=-n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

34.719

\(488\)

13621

\begin{align*} 2 y y^{\prime } x&=\left (1-n \right ) y^{2}+\left (a \left (2 n +1\right ) x +2 n -1\right ) y-a^{2} n \,x^{2}-b x -n \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

42.515

\(489\)

13622

\begin{align*} \left (a x y-a k y+b x -b k \right ) y^{\prime }&=c y^{2}+d x y+\left (-d k +b \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

64.080

\(490\)

13627

\begin{align*} \left (A x y+B \,x^{2}+x k \right ) y^{\prime }&=A y^{2}+c x y+d \,x^{2}+\left (-A \beta +k \right ) y-c \beta x -k \beta \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

96.289

\(491\)

13628

\begin{align*} \left (A x y+A k y+B \,x^{2}+B k x \right ) y^{\prime }&=c y^{2}+d x y+k \left (d -B \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

107.519

\(492\)

13630

\begin{align*} \left (\left (a x +c \right ) y+\left (1-n \right ) x^{2}+\left (2 n -1\right ) x -n \right ) y^{\prime }&=2 a y^{2}+2 y x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

255.658

\(493\)

13632

\begin{align*} x \left (\left (m -1\right ) \left (A x +B \right ) y+m \left (d \,x^{2}+e x +F \right )\right ) y^{\prime }&=\left (A \left (1-n \right ) x -B n \right ) y^{2}+\left (d \left (2-n \right ) x^{2}+e \left (1-n \right ) x -F n \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

423.643

\(494\)

13633

\begin{align*} x \left (2 a x y+b \right ) y^{\prime }&=-4 a \,x^{2} y^{2}-3 b x y+c \,x^{2}+k \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.675

\(495\)

13634

\begin{align*} \left (y x +a \,x^{n}+b \,x^{2}\right ) y^{\prime }&=y^{2}+c \,x^{n}+b x y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

241.806

\(496\)

13636

\begin{align*} y y^{\prime }&=-n y^{2}+a \left (2 n +1\right ) {\mathrm e}^{x} y+b y-a^{2} n \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}+c \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

101.426

\(497\)

13638

\begin{align*} y^{\prime }&=-y^{3}+3 y a^{2} x^{2}-2 a^{3} x^{3}+a \\ \end{align*}

[_Abel]

1.222

\(498\)

13639

\begin{align*} y^{\prime }&=-y^{3}+\left (a x +b \right ) y^{2} \\ \end{align*}

[_Abel]

4.393

\(499\)

13640

\begin{align*} y^{\prime }&=-y^{3}+\frac {y^{2}}{\left (a x +b \right )^{2}} \\ \end{align*}

[_rational, _Abel]

7.625

\(500\)

13644

\begin{align*} y^{\prime }&=a y^{3} x +2 a b \,x^{2} y^{2}-b -2 a \,b^{3} x^{4} \\ \end{align*}

[_Abel]

3.175

\(501\)

13648

\begin{align*} 9 y^{\prime }&=-x^{m} \left (a \,x^{1-m}+b \right )^{2 \lambda +1} y^{3}-x^{-2 m} \left (9 a +2+9 b m \,x^{m -1}\right ) \left (a \,x^{1-m}+b \right )^{-\lambda -2} \\ \end{align*}

[_Abel]

9.984

\(502\)

13653

\begin{align*} x^{2} y^{\prime }&=y^{3}-3 a^{2} x^{4} y+2 a^{3} x^{6}+2 a \,x^{3} \\ \end{align*}

[_rational, _Abel]

1.374

\(503\)

13654

\begin{align*} y^{\prime }&=-\left (a x +b \,x^{m}\right ) y^{3}+y^{2} \\ \end{align*}

[_Abel]

30.175

\(504\)

13655

\begin{align*} y^{\prime }&=\frac {y^{3}}{\sqrt {a \,x^{2}+b x +c}}+y^{2} \\ \end{align*}

[_Abel]

59.778

\(505\)

13656

\begin{align*} y^{\prime }&=-y^{3}+a \,{\mathrm e}^{\lambda x} y^{2} \\ \end{align*}

[_Abel]

3.845

\(506\)

13657

\begin{align*} y^{\prime }&=-y^{3}+3 a^{2} {\mathrm e}^{2 \lambda x} y-2 a^{3} {\mathrm e}^{3 \lambda x}+a \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Abel]

2.339

\(507\)

14035

\begin{align*} \left (x^{2}+y^{2}\right ) \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}+x \right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[_rational]

3.914

\(508\)

14042

\begin{align*} y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.720

\(509\)

14068

\begin{align*} \left (x -y^{\prime }-y\right )^{2}&=x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

56.862

\(510\)

14246

\begin{align*} x x^{\prime }&=1-t x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.443

\(511\)

14247

\begin{align*} {x^{\prime }}^{2}+t x&=\sqrt {1+t} \\ \end{align*}

[‘y=_G(x,y’)‘]

53.056

\(512\)

14442

\begin{align*} 3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.503

\(513\)

15037

\begin{align*} y^{\prime }&=x y^{3}+x^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Abel]

0.558

\(514\)

15117

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

0.920

\(515\)

15121

\begin{align*} y^{\prime }&=t \ln \left (y^{2 t}\right )+t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.214

\(516\)

15123

\begin{align*} y^{\prime }&=\ln \left (y x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

0.421

\(517\)

15142

\begin{align*} {y^{\prime }}^{2}+x y {y^{\prime }}^{2}&=\ln \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

14.445

\(518\)

15540

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ \end{align*}

[_Abel]

1.540

\(519\)

15545

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {15-x^{2}-y^{2}}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.586

\(520\)

15847

\begin{align*} y^{\prime }&=2 y^{3}+t^{2} \\ y \left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

[_Abel]

0.916

\(521\)

15943

\begin{align*} y^{\prime }&=\left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

[‘x=_G(y,y’)‘]

11.931

\(522\)

15966

\begin{align*} y^{\prime }&=\left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \\ \end{align*}

[_Abel]

7.580

\(523\)

16198

\begin{align*} \sin \left (x +y\right )-y y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

9.589

\(524\)

16257

\begin{align*} y^{2} y^{\prime }+3 x^{2} y&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

3.645

\(525\)

16955

\begin{align*} y y^{\prime }+y^{4}&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

14.814

\(526\)

17010

\begin{align*} 4 \left (x^{2}+y^{2}\right ) x -5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

24.788

\(527\)

17035

\begin{align*} y^{\prime }+t^{2}&=\frac {1}{y^{2}} \\ \end{align*}

[_rational]

3.041

\(528\)

17220

\begin{align*} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

6.641

\(529\)

17297

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=y^{4} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Bernoulli]

22.027

\(530\)

17844

\begin{align*} y^{\prime }&=\sin \left (y\right )-\cos \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

3.485

\(531\)

17847

\begin{align*} y^{\prime }&=\sin \left (y x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.112

\(532\)

17902

\begin{align*} x^{2} y^{\prime } \cos \left (y\right )+1&=0 \\ y \left (\infty \right ) &= \frac {16 \pi }{3} \\ \end{align*}

[_separable]

60.288

\(533\)

17903

\begin{align*} x^{2} y^{\prime }+\cos \left (2 y\right )&=1 \\ y \left (\infty \right ) &= \frac {10 \pi }{3} \\ \end{align*}

[_separable]

17.137

\(534\)

17957

\begin{align*} y^{\prime }-2 \,{\mathrm e}^{x} y&=2 \sqrt {{\mathrm e}^{x} y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

32.082

\(535\)

17963

\begin{align*} y^{\prime }&=y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10.547

\(536\)

17966

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

18.198

\(537\)

18552

\begin{align*} y^{\prime }&=\sqrt {1-t^{2}-y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.786

\(538\)

18553

\begin{align*} y^{\prime }&=\frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

6.711

\(539\)

18554

\begin{align*} y^{\prime }&=\left (t^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.974

\(540\)

18575

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

8.517

\(541\)

18591

\begin{align*} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.548

\(542\)

19092

\begin{align*} y^{\prime } \left (x^{2}+y^{2}+3\right )&=2 x \left (2 y-\frac {x^{2}}{y}\right ) \\ \end{align*}

[_rational]

5.658

\(543\)

19107

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\ \end{align*}

[_rational]

5.609

\(544\)

19139

\begin{align*} y&={y^{\prime }}^{2}-y^{\prime } x +\frac {x^{3}}{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

27.803

\(545\)

19998

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

76.720

\(546\)

19999

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

36.955

\(547\)

20013

\begin{align*} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

245.902

\(548\)

20035

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right )&=2 y^{\prime } \\ \end{align*}

[_rational]

34.272

\(549\)

20274

\begin{align*} y^{\prime }-\frac {\tan \left (y\right )}{x +1}&=\left (x +1\right ) {\mathrm e}^{x} \sec \left (y\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

10.594

\(550\)

20281

\begin{align*} y^{\prime }+\frac {y \ln \left (y\right )}{x}&=\frac {y}{x^{2}}-\ln \left (y\right )^{2} \\ \end{align*}

[‘x=_G(y,y’)‘]

2.620

\(551\)

20296

\begin{align*} \frac {y y^{\prime }+x}{-y+y^{\prime } x}&=\sqrt {\frac {a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

78.743

\(552\)

20318

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.681

\(553\)

20430

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&=a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

81.651

\(554\)

20433

\begin{align*} \left (-y+y^{\prime } x \right )^{2}&={y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

29.987

\(555\)

20443

\begin{align*} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

83.655

\(556\)

20476

\begin{align*} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[_rational]

88.424

\(557\)

20477

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

13.757

\(558\)

20480

\begin{align*} \left (x^{2} y^{\prime }+y^{2}\right ) \left (y^{\prime } x +y\right )&=\left (1+y^{\prime }\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

18.679

\(559\)

20483

\begin{align*} \left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right )&=2 y^{\prime } \\ \end{align*}

[_rational]

67.546

\(560\)

20690

\begin{align*} y^{\prime }+x \sin \left (2 y\right )&=x^{3} \cos \left (y\right )^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

7.458

\(561\)

20693

\begin{align*} \left (x y \sin \left (y x \right )+\cos \left (y x \right )\right ) y+\left (x y \sin \left (y x \right )-\cos \left (y x \right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.592

\(562\)

20695

\begin{align*} 3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

8.062

\(563\)

20730

\begin{align*} 3 y {y^{\prime }}^{2}-2 y y^{\prime } x +4 y^{2}-x^{2}&=0 \\ \end{align*}

[_rational]

76.627

\(564\)

20732

\begin{align*} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

298.737

\(565\)

20745

\begin{align*} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 y x +x^{2}+2\right ) y^{\prime }+2 y^{2}+1&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

82.694

\(566\)

20821

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.862

\(567\)

20989

\begin{align*} y^{\prime }&=x^{3}+y^{3} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_Abel]

2.619

\(568\)

20990

\begin{align*} y^{\prime }&=x +\sqrt {1+y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.123

\(569\)

21039

\begin{align*} x^{\prime }&=t^{2} x^{4}+1 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Chini]

2.639

\(570\)

21041

\begin{align*} x^{\prime }&=\sin \left (t x\right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

1.642

\(571\)

21044

\begin{align*} x^{\prime }&=\arctan \left (x\right )+t \\ \end{align*}

[‘y=_G(x,y’)‘]

8.616

\(572\)

21076

\begin{align*} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.305

\(573\)

21094

\begin{align*} {x^{\prime }}^{2}&=x^{2}+t^{2}-1 \\ \end{align*}

[‘y=_G(x,y’)‘]

10.319

\(574\)

21451

\begin{align*} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.964

\(575\)

21466

\begin{align*} y^{\prime }&=1+x +\cos \left (x \right ) x^{2}-\left (1+4 \cos \left (x \right ) x \right ) y+2 y^{2} \cos \left (x \right ) \\ \end{align*}

[_Riccati]

33.632

\(576\)

21608

\begin{align*} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

5.913

\(577\)

21824

\begin{align*} -y+y^{\prime } x&=x^{2} \sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

37.740

\(578\)

21839

\begin{align*} y^{3} \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}\right )^{3} y^{\prime } \\ \end{align*}

[_rational]

4.284

\(579\)

21853

\begin{align*} a x y-b +\left (c x y-d \right ) x y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.579

\(580\)

21973

\begin{align*} y^{\prime }&=x \sin \left (y\right )+{\mathrm e}^{x} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.722

\(581\)

21982

\begin{align*} 1+y x +y y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.043

\(582\)

22336

\begin{align*} {| y^{\prime }|}+1&=0 \\ \end{align*}

[_sym_implicit]

0.070

\(583\)

22345

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_Riccati, _special]]

12.541

\(584\)

22347

\begin{align*} y^{\prime }&=y \csc \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.563

\(585\)

22348

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {x^{2}+4 y^{2}-4}} \\ y \left (3\right ) &= 2 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.353

\(586\)

22376

\begin{align*} U^{\prime }&=\frac {U+1}{\sqrt {s}+\sqrt {s U}} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

40.056

\(587\)

22473

\begin{align*} x^{3}+2 x y^{2}-x +\left (x^{2} y+2 y^{3}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

4.480

\(588\)

22476

\begin{align*} x^{2}+y \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )-\left (x^{2}+x \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

25.151

\(589\)

22597

\begin{align*} y^{\prime }&=\sqrt {y+\sin \left (x \right )}-\cos \left (x \right ) \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.108

\(590\)

23133

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

11.744

\(591\)

23141

\begin{align*} y y^{\prime }&=y+x^{2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.755

\(592\)

23156

\begin{align*} y^{2} y^{\prime }+\tan \left (x \right ) y&=\sin \left (x \right )^{3} \\ \end{align*}

[‘y=_G(x,y’)‘]

11.677

\(593\)

23188

\begin{align*} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[NONE]

52.081

\(594\)

23207

\begin{align*} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

25.762

\(595\)

23211

\begin{align*} y x +1+y^{2} y^{\prime }&=0 \\ \end{align*}

[_rational]

2.687

\(596\)

23860

\begin{align*} 2 x^{3} y+\left (2 y^{2} x^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

4.117

\(597\)

23863

\begin{align*} x \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}+2 y^{2}\right )+y \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}-2 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

16.115

\(598\)

23868

\begin{align*} y^{\prime }&=\frac {y x +3}{5 x -y} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.789

\(599\)

23871

\begin{align*} y^{\prime }&=\frac {2 y x +3 y}{x^{2}+2 y^{2}} \\ \end{align*}

[_rational]

8.363

\(600\)

23888

\begin{align*} \frac {8 x^{4} y+12 x^{3} y^{2}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{1+x^{2} y^{4}}&=0 \\ \end{align*}

[_rational]

54.088

\(601\)

23901

\begin{align*} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.441

\(602\)

23904

\begin{align*} x^{3}+y^{2}+\left (y x -3 x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

11.777

\(603\)

24195

\begin{align*} x +\sin \left (y\right )-\cos \left (y\right )-x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

95.806

\(604\)

24220

\begin{align*} y^{2} \left (-x^{2}+1\right )+x \left (y^{2} x^{2}+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

6.119

\(605\)

24221

\begin{align*} y \left (y^{2} x^{2}-1\right )+x \left (x^{2} y+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

53.213

\(606\)

24335

\begin{align*} y \left (x \tan \left (x \right )+\ln \left (y\right )\right )+\tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.339

\(607\)

24399

\begin{align*} y^{\prime }&=\tan \left (y\right ) \cot \left (x \right )-\sec \left (y\right ) \cos \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

11.157

\(608\)

24803

\begin{align*} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

53.900

\(609\)

25028

\begin{align*} y+2 t +2 t y y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.582

\(610\)

25030

\begin{align*} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

0.964

\(611\)

25748

\begin{align*} y^{\prime }&=6 \sqrt {y}+5 x^{3} \\ y \left (-1\right ) &= 4 \\ \end{align*}

[_Chini]

5.005

\(612\)

25769

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_Riccati]

12.371

\(613\)

25771

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (-6\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

2.148

\(614\)

25772

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.373

\(615\)

25773

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.373

\(616\)

25774

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (8\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.406

\(617\)

25800

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

25.797