2.2.11 Problems 1001 to 1100

Table 2.23: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1001

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=47 x_{1}-8 x_{2}+5 x_{3}-5 x_{4} \\ x_{2}^{\prime }=-10 x_{1}+32 x_{2}+18 x_{3}-2 x_{4} \\ x_{3}^{\prime }=139 x_{1}-40 x_{2}-167 x_{3}-121 x_{4} \\ x_{4}^{\prime }=-232 x_{1}+64 x_{2}+360 x_{3}+248 x_{4} \end {array}\right ] \]

system_of_ODEs

1.171

1002

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=139 x_{1}-14 x_{2}-52 x_{3}-14 x_{4}+28 x_{5} \\ x_{2}^{\prime }=-22 x_{1}+5 x_{2}+7 x_{3}+8 x_{4}-7 x_{5} \\ x_{3}^{\prime }=370 x_{1}-38 x_{2}-139 x_{3}-38 x_{4}+76 x_{5} \\ x_{4}^{\prime }=152 x_{1}-16 x_{2}-59 x_{3}-13 x_{4}+35 x_{5} \\ x_{5}^{\prime }=95 x_{1}-10 x_{2}-38 x_{3}-7 x_{4}+23 x_{5} \end {array}\right ] \]

system_of_ODEs

1.419

1003

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}+13 x_{2}-13 x_{6} \\ x_{2}^{\prime }=-14 x_{1}+19 x_{2}-10 x_{3}-20 x_{4}+10 x_{5}+4 x_{6} \\ x_{3}^{\prime }=-30 x_{1}+12 x_{2}-7 x_{3}-30 x_{4}+12 x_{5}+18 x_{6} \\ x_{4}^{\prime }=-12 x_{1}+10 x_{2}-10 x_{3}-9 x_{4}+10 x_{5}+2 x_{6} \\ x_{5}^{\prime }=6 x_{1}+9 x_{2}+6 x_{4}+5 x_{5}-15 x_{6} \\ x_{6}^{\prime }=-14 x_{1}+23 x_{2}-10 x_{3}-20 x_{4}+10 x_{5} \end {array}\right ] \]

system_of_ODEs

2.885

1004

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}+4 x_{2} \\ x_{2}^{\prime }=-6 x_{1}-x_{2} \\ x_{3}^{\prime }=6 x_{1}+4 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.373

1005

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-3 x_{2} \\ x_{2}^{\prime }=3 x_{1}+7 x_{2} \end {array}\right ] \]

system_of_ODEs

0.362

1006

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+2 x_{3} \\ x_{2}^{\prime }=-5 x_{1}-3 x_{2}-7 x_{3} \\ x_{3}^{\prime }=x_{1} \end {array}\right ] \]

system_of_ODEs

0.393

1007

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{3} \\ x_{2}^{\prime }=x_{4} \\ x_{3}^{\prime }=-2 x_{1}+2 x_{2}-3 x_{3}+x_{4} \\ x_{4}^{\prime }=2 x_{1}-2 x_{2}+x_{3}-3 x_{4} \end {array}\right ] \]

system_of_ODEs

0.532

1008

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2} \\ x_{2}^{\prime }=-x_{1}-4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.366

1009

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.425

1010

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.360

1011

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=x_{1}+5 x_{2} \end {array}\right ] \]

system_of_ODEs

0.409

1012

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}+x_{2} \\ x_{2}^{\prime }=-4 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

1.470

1013

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}+9 x_{2} \end {array}\right ] \]

system_of_ODEs

0.660

1014

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1} \\ x_{2}^{\prime }=-7 x_{1}+9 x_{2}+7 x_{3} \\ x_{3}^{\prime }=2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.349

1015

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=25 x_{1}+12 x_{2} \\ x_{2}^{\prime }=-18 x_{1}-5 x_{2} \\ x_{3}^{\prime }=6 x_{1}+6 x_{2}+13 x_{3} \end {array}\right ] \]

system_of_ODEs

0.505

1016

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-19 x_{1}+12 x_{2}+84 x_{3} \\ x_{2}^{\prime }=5 x_{2} \\ x_{3}^{\prime }=-8 x_{1}+4 x_{2}+33 x_{3} \end {array}\right ] \]

system_of_ODEs

0.418

1017

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-13 x_{1}+40 x_{2}-48 x_{3} \\ x_{2}^{\prime }=-8 x_{1}+23 x_{2}-24 x_{3} \\ x_{3}^{\prime }=3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.390

1018

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-4 x_{3} \\ x_{2}^{\prime }=-x_{1}-x_{2}-x_{3} \\ x_{3}^{\prime }=x_{1}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.390

1019

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+x_{3} \\ x_{2}^{\prime }=-x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.273

1020

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+x_{3} \\ x_{2}^{\prime }=x_{2}-4 x_{3} \\ x_{3}^{\prime }=x_{2}-3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.307

1021

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{3} \\ x_{2}^{\prime }=-5 x_{1}-x_{2}-5 x_{3} \\ x_{3}^{\prime }=4 x_{1}+x_{2}-2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.339

1022

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}-9 x_{2} \\ x_{2}^{\prime }=x_{1}+4 x_{2} \\ x_{3}^{\prime }=x_{1}+3 x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.516

1023

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=-2 x_{1}-2 x_{2}-3 x_{3} \\ x_{3}^{\prime }=2 x_{1}+3 x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.360

1024

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=18 x_{1}+7 x_{2}+4 x_{3} \\ x_{3}^{\prime }=-27 x_{1}-9 x_{2}-5 x_{3} \end {array}\right ] \]

system_of_ODEs

0.529

1025

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=x_{1}+3 x_{2}+x_{3} \\ x_{3}^{\prime }=-2 x_{1}-4 x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.376

1026

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2}-2 x_{4} \\ x_{2}^{\prime }=x_{2} \\ x_{3}^{\prime }=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\ x_{4}^{\prime }=-4 x_{2}-x_{4} \end {array}\right ] \]

system_of_ODEs

0.408

1027

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+x_{4} \\ x_{2}^{\prime }=2 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{3}+x_{4} \\ x_{4}^{\prime }=2 x_{4} \end {array}\right ] \]

system_of_ODEs

0.370

1028

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \\ x_{3}^{\prime }=x_{1}+2 x_{2}+x_{3} \\ x_{4}^{\prime }=x_{2}+x_{4} \end {array}\right ] \]

system_of_ODEs

0.302

1029

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{2}+7 x_{3} \\ x_{2}^{\prime }=-x_{2}-4 x_{3} \\ x_{3}^{\prime }=x_{2}+3 x_{3} \\ x_{4}^{\prime }=-6 x_{2}-14 x_{3}+x_{4} \end {array}\right ] \]

system_of_ODEs

0.489

1030

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=39 x_{1}+8 x_{2}-16 x_{3} \\ x_{2}^{\prime }=-36 x_{1}-5 x_{2}+16 x_{3} \\ x_{3}^{\prime }=72 x_{1}+16 x_{2}-29 x_{3} \end {array}\right ] \]

system_of_ODEs

0.469

1031

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=28 x_{1}+50 x_{2}+100 x_{3} \\ x_{2}^{\prime }=15 x_{1}+33 x_{2}+60 x_{3} \\ x_{3}^{\prime }=-15 x_{1}-30 x_{2}-57 x_{3} \end {array}\right ] \]

system_of_ODEs

0.687

1032

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+17 x_{2}+4 x_{3} \\ x_{2}^{\prime }=-x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{2}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.407

1033

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \\ x_{3}^{\prime }=-3 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.329

1034

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+5 x_{2}-5 x_{3} \\ x_{2}^{\prime }=3 x_{1}-x_{2}+3 x_{3} \\ x_{3}^{\prime }=8 x_{1}-8 x_{2}+10 x_{3} \end {array}\right ] \]

system_of_ODEs

0.511

1035

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-15 x_{1}-7 x_{2}+4 x_{3} \\ x_{2}^{\prime }=34 x_{1}+16 x_{2}-11 x_{3} \\ x_{3}^{\prime }=17 x_{1}+7 x_{2}+5 x_{3} \end {array}\right ] \]

system_of_ODEs

0.435

1036

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+x_{2}+x_{3}-2 x_{4} \\ x_{2}^{\prime }=7 x_{1}-4 x_{2}-6 x_{3}+11 x_{4} \\ x_{3}^{\prime }=5 x_{1}-x_{2}+x_{3}+3 x_{4} \\ x_{4}^{\prime }=6 x_{1}-2 x_{2}-2 x_{3}+6 x_{4} \end {array}\right ] \]

system_of_ODEs

1.130

1037

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}-2 x_{3}+x_{4} \\ x_{2}^{\prime }=3 x_{2}-5 x_{3}+3 x_{4} \\ x_{3}^{\prime }=-13 x_{2}+22 x_{3}-12 x_{4} \\ x_{4}^{\prime }=-27 x_{2}+45 x_{3}-25 x_{4} \end {array}\right ] \]

system_of_ODEs

1.826

1038

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=35 x_{1}-12 x_{2}+4 x_{3}+30 x_{4} \\ x_{2}^{\prime }=22 x_{1}-8 x_{2}+3 x_{3}+19 x_{4} \\ x_{3}^{\prime }=-10 x_{1}+3 x_{2}-9 x_{4} \\ x_{4}^{\prime }=-27 x_{1}+9 x_{2}-3 x_{3}-23 x_{4} \end {array}\right ] \]

system_of_ODEs

1.007

1039

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=11 x_{1}-x_{2}+26 x_{3}+6 x_{4}-3 x_{5} \\ x_{2}^{\prime }=3 x_{2} \\ x_{3}^{\prime }=-9 x_{1}-24 x_{3}-6 x_{4}+3 x_{5} \\ x_{4}^{\prime }=3 x_{1}+9 x_{3}+5 x_{4}-x_{5} \\ x_{5}^{\prime }=-48 x_{1}-3 x_{2}-138 x_{3}-30 x_{4}+18 x_{5} \end {array}\right ] \]

system_of_ODEs

1.190

1040

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2}+x_{3} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2}+x_{4} \\ x_{3}^{\prime }=3 x_{3}-4 x_{4} \\ x_{4}^{\prime }=4 x_{3}+3 x_{4} \end {array}\right ] \]

system_of_ODEs

0.575

1041

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-8 x_{3}-3 x_{4} \\ x_{2}^{\prime }=-18 x_{1}-x_{2} \\ x_{3}^{\prime }=-9 x_{1}-3 x_{2}-25 x_{3}-9 x_{4} \\ x_{4}^{\prime }=33 x_{1}+10 x_{2}+90 x_{3}+32 x_{4} \end {array}\right ] \]

system_of_ODEs

1.127

1042

\[ {}y^{\prime } = y \]

[_quadrature]

0.358

1043

\[ {}y^{\prime } = 4 y \]

[_quadrature]

0.325

1044

\[ {}2 y^{\prime }+3 y = 0 \]

[_quadrature]

0.362

1045

\[ {}2 x y+y^{\prime } = 0 \]

[_separable]

0.416

1046

\[ {}y^{\prime } = x^{2} y \]

[_separable]

0.371

1047

\[ {}\left (x -2\right ) y^{\prime }+y = 0 \]

[_separable]

0.632

1048

\[ {}\left (2 x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

0.411

1049

\[ {}2 \left (x +1\right ) y^{\prime } = y \]

[_separable]

0.891

1050

\[ {}\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_separable]

0.633

1051

\[ {}2 \left (x -1\right ) y^{\prime } = 3 y \]

[_separable]

0.639

1052

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

0.590

1053

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

0.627

1054

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.632

1055

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.413

1056

\[ {}y^{\prime } x +y = 0 \]

[_separable]

0.536

1057

\[ {}2 y^{\prime } x = y \]

[_separable]

0.524

1058

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

0.090

1059

\[ {}x^{3} y^{\prime } = 2 y \]

[_separable]

0.106

1060

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.633

1061

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.650

1062

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.693

1063

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.687

1064

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.891

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1.493

1066

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.623

1067

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.644

1068

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.532

1069

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.655

1070

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.599

1071

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.589

1072

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.651

1073

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.667

1074

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.756

1075

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.544

1076

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.599

1077

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.532

1078

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.605

1079

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.514

1080

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.486

1081

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.610

1082

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.539

1083

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.538

1084

\[ {}\left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.684

1085

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.556

1086

\[ {}\left (4 x^{2}+16 x +17\right ) y^{\prime \prime } = 8 y \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.720

1087

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.697

1088

\[ {}y^{\prime \prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.637

1089

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.745

1090

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.629

1091

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.634

1092

\[ {}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.589

1093

\[ {}y^{\prime \prime }+{\mathrm e}^{-x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.759

1094

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.935

1095

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+x y = 0 \]

[_Lienard]

1.708

1096

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.641

1097

\[ {}y^{\prime \prime } = x y \]

[[_Emden, _Fowler]]

0.522

1098

\[ {}3 y+y^{\prime } = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1.511

1099

\[ {}-2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1.805

1100

\[ {}y+y^{\prime } = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.929