# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.116 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.891 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.012 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.682 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{{4}/{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.052 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.221 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.625 |
|
\[
{}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.907 |
|
\[
{}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.320 |
|
\[
{}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.894 |
|
\[
{}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
7.146 |
|
\[
{}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.449 |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.460 |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
74.765 |
|
\[
{}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
18.273 |
|
\[
{}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
34.327 |
|
\[
{}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
9.671 |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
27.817 |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
27.493 |
|
\[
{}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
17.628 |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
16.262 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 y \\ y^{\prime }=3 x \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.354 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=3 x-2 y \\ y^{\prime }=2 x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.612 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }=5 x-y-t^{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.931 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.344 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{2} \\ x_{2}^{\prime }=2 x_{3} \\ x_{3}^{\prime }=3 x_{4} \\ x_{4}^{\prime }=4 x_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.904 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3}+1 \\ x_{2}^{\prime }=x_{3}+x_{4}+t \\ x_{3}^{\prime }=x_{1}+x_{4}+t^{2} \\ x_{4}^{\prime }=x_{1}+x_{2}+t^{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.929 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.322 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.398 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.342 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.341 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.339 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.342 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.392 |
|
\[
{}5 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.074 |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.078 |
|
\[
{}y^{\prime \prime \prime \prime }-16 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.114 |
|
\[
{}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.087 |
|
\[
{}6 y^{\prime \prime \prime \prime }+11 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.087 |
|
\[
{}y^{\prime \prime \prime \prime } = 16 y
\] |
[[_high_order, _missing_x]] |
✓ |
0.078 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.099 |
|
\[
{}2 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.143 |
|
\[
{}3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.134 |
|
\[
{}y^{\prime \prime \prime }+10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.140 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.069 |
|
\[
{}2 y^{\prime \prime \prime }-y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime }+27 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.079 |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-3 y^{\prime }-6 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.079 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+4 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.078 |
|
\[
{}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.074 |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.087 |
|
\[
{}y^{\prime \prime \prime } = y
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.132 |
|
\[
{}y^{\prime \prime \prime \prime } = y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+2 y
\] |
[[_high_order, _missing_x]] |
✓ |
0.091 |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.125 |
|
\[
{}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.120 |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.120 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.128 |
|
\[
{}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
0.126 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=6 x_{1} \\ x_{2}^{\prime }=-3 x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.321 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+4 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.359 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.312 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+3 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.347 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=3 x_{1}+2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.465 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2} \\ x_{2}^{\prime }=6 x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.342 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.328 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }=-6 x_{1}-2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.462 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }=6 x_{1}-5 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.362 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.413 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.495 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=9 x_{1}+3 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.407 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}+x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.426 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.429 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-9 x_{2} \\ x_{2}^{\prime }=2 x_{1}-x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.446 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.377 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=7 x_{1}-5 x_{2} \\ x_{2}^{\prime }=4 x_{1}+3 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.477 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }=100 x_{1}-60 x_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.352 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+4 x_{3} \\ x_{2}^{\prime }=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}+x_{2}+4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.475 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=2 x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=2 x_{1}+x_{2}+7 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.467 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2}+4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.370 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }=3 x_{1}+x_{2}+5 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.488 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-6 x_{3} \\ x_{2}^{\prime }=2 x_{1}-x_{2}-2 x_{3} \\ x_{3}^{\prime }=4 x_{1}-2 x_{2}-4 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.503 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-5 x_{1}-4 x_{2}-2 x_{3} \\ x_{3}^{\prime }=5 x_{1}+5 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.497 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=-5 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }=5 x_{1}+5 x_{2}+3 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.521 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }=4 x_{1}+4 x_{2}+2 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.621 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+5 x_{2}+2 x_{3} \\ x_{2}^{\prime }=-6 x_{1}-6 x_{2}-5 x_{3} \\ x_{3}^{\prime }=6 x_{1}+6 x_{2}+5 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.665 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+x_{3} \\ x_{2}^{\prime }=9 x_{1}-x_{2}+2 x_{3} \\ x_{3}^{\prime }=-9 x_{1}+4 x_{2}-x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.757 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+2 x_{2} \\ x_{3}^{\prime }=3 x_{2}+3 x_{3} \\ x_{4}^{\prime }=4 x_{3}+4 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.640 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+9 x_{4} \\ x_{2}^{\prime }=4 x_{1}+2 x_{2}-10 x_{4} \\ x_{3}^{\prime }=-x_{3}+8 x_{4} \\ x_{4}^{\prime }=x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.625 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1} \\ x_{2}^{\prime }=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\ x_{3}^{\prime }=5 x_{3} \\ x_{4}^{\prime }=-21 x_{3}-2 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.714 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\ x_{2}^{\prime }=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\ x_{3}^{\prime }=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\ x_{4}^{\prime }=7 x_{1}+x_{2}+x_{3}+4 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.858 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-40 x_{1}-12 x_{2}+54 x_{3} \\ x_{2}^{\prime }=35 x_{1}+13 x_{2}-46 x_{3} \\ x_{3}^{\prime }=-25 x_{1}-7 x_{2}+34 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.528 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-20 x_{1}+11 x_{2}+13 x_{3} \\ x_{2}^{\prime }=12 x_{1}-x_{2}-7 x_{3} \\ x_{3}^{\prime }=-48 x_{1}+21 x_{2}+31 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.556 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=147 x_{1}+23 x_{2}-202 x_{3} \\ x_{2}^{\prime }=-90 x_{1}-9 x_{2}+129 x_{3} \\ x_{3}^{\prime }=90 x_{1}+15 x_{2}-123 x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.554 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=9 x_{1}-7 x_{2}-5 x_{3} \\ x_{2}^{\prime }=-12 x_{1}+7 x_{2}+11 x_{3}+9 x_{4} \\ x_{3}^{\prime }=24 x_{1}-17 x_{2}-19 x_{3}-9 x_{4} \\ x_{4}^{\prime }=-18 x_{1}+13 x_{2}+17 x_{3}+9 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.876 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=13 x_{1}-42 x_{2}+106 x_{3}+139 x_{4} \\ x_{2}^{\prime }=2 x_{1}-16 x_{2}+52 x_{3}+70 x_{4} \\ x_{3}^{\prime }=x_{1}+6 x_{2}-20 x_{3}-31 x_{4} \\ x_{4}^{\prime }=-x_{1}-6 x_{2}+22 x_{3}+33 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.068 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=23 x_{1}-18 x_{2}-16 x_{3} \\ x_{2}^{\prime }=-8 x_{1}+6 x_{2}+7 x_{3}+9 x_{4} \\ x_{3}^{\prime }=34 x_{1}-27 x_{2}-26 x_{3}-9 x_{4} \\ x_{4}^{\prime }=-26 x_{1}+21 x_{2}+25 x_{3}+12 x_{4} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.902 |
|