2.2.129 Problems 12801 to 12900

Table 2.259: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12801

\[ {}\left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.983

12802

\[ {}\left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.163

12803

\[ {}\left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.123

12804

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.740

12805

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.747

12806

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.768

12807

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.755

12808

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.741

12809

\[ {}2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.780

12810

\[ {}3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

12811

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

0.694

12812

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.785

12813

\[ {}x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.764

12814

\[ {}x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+y x = 0 \]

[_Lienard]

0.762

12815

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.883

12816

\[ {}\left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.863

12817

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\frac {3 y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.724

12818

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.176

12819

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.174

12820

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +8 \left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.252

12821

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.267

12822

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.704

12823

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.132

12824

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.718

12825

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.122

12826

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-2 x-4 y={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-y={\mathrm e}^{4 t} \end {array}\right ] \]

system_of_ODEs

0.234

12827

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x=-2 t \\ x^{\prime }+y^{\prime }-3 x-y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.179

12828

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-3 y={\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+x={\mathrm e}^{3 t} \end {array}\right ] \]

system_of_ODEs

0.163

12829

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-2 y=2 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }-3 x-4 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.105

12830

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y={\mathrm e}^{-t} \\ x^{\prime }+2 x+y^{\prime }+y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.644

12831

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-3 x-y=t \\ x^{\prime }+y^{\prime }-4 x-y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.464

12832

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-6 y={\mathrm e}^{3 t} \\ x^{\prime }+2 y^{\prime }-2 x-6 y=t \end {array}\right ] \]

system_of_ODEs

0.630

12833

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x-3 y=3 t \\ x^{\prime }+2 y^{\prime }-2 x-3 y=1 \end {array}\right ] \]

system_of_ODEs

0.622

12834

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+2 y=\sin \left (t \right ) \\ x^{\prime }+y^{\prime }-x-y=0 \end {array}\right ] \]

system_of_ODEs

0.211

12835

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }-2 x+4 y=t \\ x^{\prime }+y^{\prime }-x-y=1 \end {array}\right ] \]

system_of_ODEs

0.473

12836

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }+x+5 y=4 t \\ x^{\prime }+y^{\prime }+2 x+2 y=2 \end {array}\right ] \]

system_of_ODEs

0.445

12837

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }-x+5 y=t^{2} \\ x^{\prime }+2 y^{\prime }-2 x+4 y=2 t +1 \end {array}\right ] \]

system_of_ODEs

1.368

12838

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }+x+y=t^{2}+4 t \\ x^{\prime }+y^{\prime }+2 x+2 y=2 t^{2}-2 t \end {array}\right ] \]

system_of_ODEs

0.463

12839

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }-x+y=t -1 \\ x^{\prime }+y^{\prime }-x=t +2 \end {array}\right ] \]

system_of_ODEs

0.585

12840

\[ {}\left [\begin {array}{c} 2 x^{\prime }+4 y^{\prime }+x-y=3 \,{\mathrm e}^{t} \\ x^{\prime }+y^{\prime }+2 x+2 y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.487

12841

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y=-2 t \\ x^{\prime }+y^{\prime }+x-y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.463

12842

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-x-y=1 \\ x^{\prime }+y^{\prime }+2 x-y=t \end {array}\right ] \]

system_of_ODEs

0.454

12843

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+4 y \\ y^{\prime }=2 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.452

12844

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=4 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.471

12845

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+2 y+5 t \\ y^{\prime }=3 x+4 y+17 t \end {array}\right ] \]

system_of_ODEs

0.486

12846

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-2 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.299

12847

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.296

12848

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+7 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.396

12849

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y \\ y^{\prime }=7 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.489

12850

\(\left [\begin {array}{cc} 1 & 2 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.142

12851

\(\left [\begin {array}{cc} 3 & 2 \\ 6 & -1 \end {array}\right ]\)

Eigenvectors

0.137

12852

\(\left [\begin {array}{cc} 3 & 1 \\ 12 & 2 \end {array}\right ]\)

Eigenvectors

0.141

12853

\(\left [\begin {array}{cc} -2 & 7 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.138

12854

\(\left [\begin {array}{cc} 3 & 4 \\ 5 & 2 \end {array}\right ]\)

Eigenvectors

0.137

12855

\(\left [\begin {array}{cc} 3 & -5 \\ -4 & 2 \end {array}\right ]\)

Eigenvectors

0.138

12856

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end {array}\right ]\)

Eigenvectors

0.235

12857

\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & -6 & 6 \end {array}\right ]\)

Eigenvectors

0.240

12858

\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end {array}\right ]\)

Eigenvectors

0.232

12859

\(\left [\begin {array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.210

12860

\(\left [\begin {array}{ccc} 1 & 3 & -6 \\ 0 & 2 & 2 \\ 0 & -1 & 5 \end {array}\right ]\)

Eigenvectors

0.213

12861

\(\left [\begin {array}{ccc} -5 & -12 & 6 \\ 1 & 5 & -1 \\ -7 & -10 & 8 \end {array}\right ]\)

Eigenvectors

0.243

12862

\(\left [\begin {array}{ccc} -2 & 5 & 5 \\ -1 & 4 & 5 \\ 3 & -3 & 2 \end {array}\right ]\)

Eigenvectors

0.238

12863

\(\left [\begin {array}{ccc} -2 & 6 & -18 \\ 12 & -23 & 66 \\ 5 & -10 & 29 \end {array}\right ]\)

Eigenvectors

0.238

12864

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=2 x+3 y-4 z \\ z^{\prime }=4 x+y-4 z \end {array}\right ] \]

system_of_ODEs

0.495

12865

\[ {}\left [\begin {array}{c} x^{\prime }=x-y-z \\ y^{\prime }=x+3 y+z \\ z^{\prime }=-3 x-6 y+6 z \end {array}\right ] \]

system_of_ODEs

0.481

12866

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

0.301

12867

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

0.249

12868

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

0.268

12869

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

0.270

12870

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

0.341

12871

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

0.546

12872

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

0.358

12873

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

0.524

12874

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

0.425

12875

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.344

12876

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

0.339

12877

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

0.787

12878

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

4.307

12879

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

1.620

12880

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

0.607

12881

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

1.253

12882

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

3.076

12883

\[ {}x^{\prime } = t^{2} x \]

[_separable]

1.007

12884

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

0.382

12885

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}} y^{2} \]

[_separable]

1.447

12886

\[ {}x^{\prime }+p x = q \]

[_quadrature]

0.334

12887

\[ {}y^{\prime } x = k y \]

[_separable]

1.189

12888

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

0.993

12889

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

0.367

12890

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

0.364

12891

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

1.146

12892

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

1.825

12893

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

1.115

12894

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

1.478

12895

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

[_linear]

1.520

12896

\[ {}y^{\prime }+{\mathrm e}^{-x} y = 1 \]
i.c.

[_linear]

1.208

12897

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

[_linear]

1.046

12898

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]
i.c.

[_linear]

1.364

12899

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

0.842

12900

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]
i.c.

[_linear]

1.047