2.2.128 Problems 12701 to 12800

Table 2.257: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12701

y+2keμxy+(ae2λx+beλx+k2e2μx+kμeμx+c)y=0

[[_2nd_order, _with_linear_symmetries]]

1.153

12702

y(a+2beax)y+b2e2axy=0

[[_2nd_order, _with_linear_symmetries]]

0.810

12703

y+(ae2λx+λ)yaλe2λxy=0

[[_2nd_order, _with_linear_symmetries]]

0.893

12704

y+(aeλxλ)y+be2λxy=0

[[_2nd_order, _with_linear_symmetries]]

0.883

12705

y+(aeλx+b)y+c(aeλx+bc)y=0

[[_2nd_order, _with_linear_symmetries]]

1.024

12706

y+(a+be2λx)y+λ(aλbe2λx)y=0

[[_2nd_order, _with_linear_symmetries]]

1.040

12707

y+(a+beλx+b3λ)y+a2λ(bλ)e2λxy=0

[[_2nd_order, _with_linear_symmetries]]

1.345

12708

y+(2aeλxλ)y+(a2e2λx+ceμx)y=0

[[_2nd_order, _with_linear_symmetries]]

1.034

12709

y+(2aeλx+b)y+(a2e2λx+a(b+λ)eλx+c)y=0

[[_2nd_order, _with_linear_symmetries]]

7.145

12710

y+(aeλx+2bλ)y+(ce2λx+abeλx+b2bλ)y=0

[[_2nd_order, _with_linear_symmetries]]

1.300

12711

y+(aex+b)y+(c(ac)e2x+(ak+bc2ck+c)ex+k(bk))y=0

[[_2nd_order, _with_linear_symmetries]]

1.185

12712

y+(aeλx+b)y+(αe2λx+βeλx+γ)y=0

[[_2nd_order, _with_linear_symmetries]]

1.168

12713

y+(2aeλxλ)y+(a2e2λx+be2μx+ceμx+k)y=0

[[_2nd_order, _with_linear_symmetries]]

1.171

12714

y+(2aeλx+bλ)y+(a2e2λx+abeλx+ce2μx+deμx+k)y=0

[[_2nd_order, _with_linear_symmetries]]

1.352

12715

y+(aeλx+beμx)y+aeλx(beμx+λ)y=0

[[_2nd_order, _with_linear_symmetries]]

1.264

12716

y+eλx(ae2μx+b)y+μ(eλx(bae2μx)μ)y=0

[[_2nd_order, _with_linear_symmetries]]

1.549

12717

y+(aeλx+beμx+c)y+(aλeλx+bμeμx)y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

1.000

12718

y+(aeλx+beμx+c)y+(abe(λ+μ)x+aceλx+bμeμx)y=0

[[_2nd_order, _with_linear_symmetries]]

1.375

12719

y+(aeλx+2beμxλ)y+(abe(λ+μ)x+ce2λx+b2e2μx+b(μλ)eμx)y=0

[[_2nd_order, _with_linear_symmetries]]

1.562

12720

y+(ae(λ+μ)x+aλeλx+beμx2λ)y+a2bλe(μ+2λ)xy=0

[[_2nd_order, _with_linear_symmetries]]

1.967

12721

y+aebxny+c(aebxnc)y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.085

12722

(aeλx+b)yaλ2eλxy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.676

12723

(a2e2λx+b)ybλya2λ2k2e2λxy=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.169

12724

2(aeλx+b)y+aλeλxy+cy=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

41.131

12725

(aeλx+b)y+(ceλx+d)y+k((ak+c)eλx+dbk)y=0

[[_2nd_order, _with_linear_symmetries]]

2.153

12726

(aeλx+b)y+(ceλx+d)y+(neλx+m)y=0

[[_2nd_order, _with_linear_symmetries]]

1.665

12727

1+2xyy+(yx)yy2=0

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.819

12728

y22x2xy2x3+(2y2x2)yy3x2y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

159.192

12729

1x2+y2+(1yxyx2+y2)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

8.717

12730

yx+x+y=0

[_linear]

2.318

12731

6x2y+1+(2y2x3)y=0

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.435

12732

sec(x)cos(y)2cos(x)sin(y)y=0

[_separable]

7.801

12733

(x+1)y2x3y=0

[_separable]

1.503

12734

(x2+1)(1+y2)y+2xy(1y2)=0

[_separable]

52.699

12735

sin(x)cos(y)2+cos(x)2y=0

[_separable]

3.684

12736

eyxx+yyx=0

[[_homogeneous, ‘class A‘], _dAlembert]

5.275

12737

2x2y+3y3(x3+2xy2)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

46.898

12738

x2y+y2xy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.785

12739

2x2y+y3x3y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

153.920

12740

y3+x3y=0

[_separable]

4.982

12741

x+ycos(yx)xcos(yx)y=0

[[_homogeneous, ‘class A‘], _dAlembert]

7.414

12742

(x+y+1)y+1+4x+3y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.593

12743

4xy+2+(x+y+3)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.631

12744

2x+y(4x+2y1)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.028

12745

y+2xy2x2y3+2x2yy=0

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.861

12746

2y+3xy2+(x+2x2y)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10.693

12747

y+xy2+(xx2y)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.058

12748

y+cot(x)y=sec(x)

[_linear]

1.838

12749

yx+(x+1)y=ex

[_linear]

1.353

12750

y2yx+1=(x+1)3

[_linear]

1.442

12751

(x3+x)y+4x2y=2

[_linear]

1.324

12752

x2y+(2x+1)y=x2

[_linear]

1.642

12753

(x2+1)y2(x+1)y=y5/2

[_rational, _Bernoulli]

1.888

12754

yy+xy2=x

[_separable]

2.033

12755

ysin(y)+sin(x)cos(y)=sin(x)

[_separable]

38.071

12756

4yx+3y+exx4y5=0

[_Bernoulli]

2.495

12757

y1+yx+1=1+y

[[_1st_order, _with_linear_symmetries]]

2.498

12758

x4y(3y+2yx)+x2(4y+3yx)=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.731

12759

y2(3y6yx)x(y2yx)=0

[_separable]

1.875

12760

2x3yy2(2x4+xy)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.520

12761

x2y+y2xy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.920

12762

yxyx2y2=yx

[‘y=_G(x,y’)‘]

2.287

12763

x+y(xy)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.688

12764

x2+y22xyy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.725

12765

xy2+2xyy=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.963

12766

yxy=x2+y2

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.541

12767

3x2+6xy+3y2+(2x2+3xy)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.026

12768

(x2+2y+y2)y+2x=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.289

12769

y4+2y+(xy3+2y44x)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.365

12770

x3yy4+(xy3x4)y=0

[_separable]

1.537

12771

y2x2+2mxy+(my2mx22xy)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

25.455

12772

yxy+2x2yx3=0

[_linear]

1.402

12773

(x+y)y1=0

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.816

12774

x+yy+yyx=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.515

12775

yxay+by2=cx2a

[_rational, _Riccati]

3.456

12776

x1y2+yx2+1y=0

[_separable]

2.856

12777

yx2+1+1y2=0

[_separable]

19.938

12778

yx2y=x5

[_linear]

1.919

12779

(yx)2y=1

[[_homogeneous, ‘class C‘], _dAlembert]

4.074

12780

yx+y+x4y4ex=0

[_Bernoulli]

3.490

12781

x(1y)y+(1x)y=0

[_separable]

1.663

12782

(yx)y+y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.906

12783

yxy=x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.293

12784

yxy=x2y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

116.650

12785

xsin(yx)ycos(yx)+xcos(yx)y=0

[[_homogeneous, ‘class A‘], _dAlembert]

4.039

12786

(4+2xy)y+5+x2y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.477

12787

y+y(x2+1)3/2=x+x2+1(x2+1)2

[_linear]

3.542

12788

(x2+1)yxy=axy2

[_separable]

3.153

12789

xy2(yx+3y)2y+yx=0

[[_homogeneous, ‘class G‘], _rational]

5.878

12790

(x2+1)y+y=arctan(x)

[_linear]

1.786

12791

5xy3y3+(3x27xy2)y=0

[[_homogeneous, ‘class G‘], _rational]

2.360

12792

y+cos(x)y=sin(2x)2

[_linear]

2.192

12793

y+xy2yx=0

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.884

12794

(1x)yx(1+y)y=0

[_separable]

1.579

12795

3x2y+(x3+x3y2)y=0

[_separable]

3.052

12796

(x2+y2)(yy+x)=(x2+y2+x)(yxy)

[_rational]

3.223

12797

2x+3y1+(2x+3y5)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.955

12798

y32x2y+(2xy2x3)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

48.436

12799

2x3y2y+(2x2y3x)y=0

[_rational]

1.685

12800

(x2+y2)(yy+x)+x2+y2+1(yyx)=0

[[_1st_order, _with_linear_symmetries]]

2.579