2.2.128 Problems 12701 to 12800

Table 2.257: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12701

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.307

12702

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.289

12703

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

10.207

12704

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6.111

12705

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

30.356

12706

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.780

12707

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.282

12708

\[ {}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.334

12709

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.791

12710

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.035

12711

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.306

12712

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.199

12713

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.195

12714

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.402

12715

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.487

12716

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

65.093

12717

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

123.867

12718

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \]

[[_3rd_order, _missing_y]]

0.238

12719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.237

12720

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.079

12721

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

34.384

12722

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

35.404

12723

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.089

12724

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2.543

12725

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.921

12726

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.128

12727

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.869

12728

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.068

12729

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.174

12730

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.624

12731

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.172

12732

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.395

12733

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.205

12734

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.934

12735

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.009

12736

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.047

12737

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.999

12738

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.454

12739

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.847

12740

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.330

12741

\[ {}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

30.684

12742

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.143

12743

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.231

12744

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.253

12745

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.418

12746

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.425

12747

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.544

12748

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.342

12749

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.613

12750

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.658

12751

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.844

12752

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.124

12753

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

1.071

12754

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.907

12755

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.962

12756

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.964

12757

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.174

12758

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

2.018

12759

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.004

12760

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.174

12761

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.982

12762

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

1.734

12763

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.115

12764

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.115

12765

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 y^{\prime } x +18 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.118

12766

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

1.437

12767

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.339

12768

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.007

12769

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 2 x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

56.072

12770

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.869

12771

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3} \]

[[_3rd_order, _with_linear_symmetries]]

0.228

12772

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.539

12773

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.855

12774

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.650

12775

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.354

12776

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.301

12777

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 10 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.611

12778

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.677

12779

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.297

12780

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.937

12781

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.900

12782

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.465

12783

\[ {}y^{\prime \prime }+8 y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.523

12784

\[ {}y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.497

12785

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.492

12786

\[ {}y^{\prime \prime }+y^{\prime } x +\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.531

12787

\[ {}y^{\prime \prime }-y^{\prime } x +\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.565

12788

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.598

12789

\[ {}\left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.610

12790

\[ {}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.593

12791

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.592

12792

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.464

12793

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.468

12794

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.601

12795

\[ {}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.575

12796

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.625

12797

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

0.645

12798

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.604

12799

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.693

12800

\[ {}\left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.871