2.2.131 Problems 13001 to 13100

Table 2.263: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13001

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

3.116

13002

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (\sin \left (x \right )+1\right ) y^{\prime } = 0 \]

[_linear]

2.879

13003

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

4.310

13004

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

1.993

13005

\[ {}x y^{\prime }+y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.390

13006

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

2.633

13007

\[ {}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{x t} \]

[_separable]

2.034

13008

\[ {}x y^{\prime }-2 y = 2 x^{4} \]
i.c.

[_linear]

1.720

13009

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

1.334

13010

\[ {}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_linear]

1.871

13011

\[ {}2 x \left (y+1\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1.535

13012

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

2.118

13013

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.578

13014

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.394

13015

\[ {}x y^{\prime }+y = \left (x y\right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

11.519

13016

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.631

13017

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 5 & 0\le x <10 \\ 1 & 10\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.776

13018

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.643

13019

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \]
i.c.

[_linear]

0.625

13020

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

1.162

13021

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

1.947

13022

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]

[‘y=_G(x,y’)‘]

1.758

13023

\[ {}\left (y+1\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

1.853

13024

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

2.094

13025

\[ {}y^{\prime } = -y^{2}+x y+1 \]

[_Riccati]

1.344

13026

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (1+4 x \right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.437

13027

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

1.467

13028

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.739

13029

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.397

13030

\[ {}x^{2}-2 y+x y^{\prime } = 0 \]

[_linear]

1.046

13031

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.379

13032

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

2.017

13033

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

1.376

13034

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.781

13035

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.579

13036

\[ {}\left (x +1\right ) y^{\prime }+x y = {\mathrm e}^{-x} \]

[_linear]

1.987

13037

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.784

13038

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

4.464

13039

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

1.410

13040

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16.664

13041

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10.146

13042

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

3.224

13043

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

3.383

13044

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

22.013

13045

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

4.117

13046

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.955

13047

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

2.158

13048

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.629

13049

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2<x \end {array}\right . \]
i.c.

[_linear]

0.638

13050

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

171.098

13051

\[ {}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.543

13052

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.190

13053

\[ {}y^{2} \left (x +1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.268

13054

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

2.301

13055

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.130

13056

\[ {}8 y^{3} x^{2}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.850

13057

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.520

13058

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.421

13059

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.990

13060

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.546

13061

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.235

13062

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.414

13063

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.733

13064

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.574

13065

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.342

13066

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

298.484

13067

\[ {}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.589

13068

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

0.840

13069

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.164

13070

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.184

13071

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.587

13072

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.838

13073

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

13074

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.124

13075

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

0.311

13076

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.314

13077

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[_Gegenbauer]

0.331

13078

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.347

13079

\[ {}\left (2 x +1\right ) y^{\prime \prime }-4 \left (x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.346

13080

\[ {}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.348

13081

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.136

13082

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.103

13083

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.804

13084

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.829

13085

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.846

13086

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.849

13087

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

0.074

13088

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

13089

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

0.819

13090

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.845

13091

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

1.878

13092

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.786

13093

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.973

13094

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.963

13095

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

0.070

13096

\[ {}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.073

13097

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.067

13098

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

[[_3rd_order, _missing_x]]

0.075

13099

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.073

13100

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.084