# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0
\] |
[_linear] |
✓ |
3.116 |
|
\[
{}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (\sin \left (x \right )+1\right ) y^{\prime } = 0
\] |
[_linear] |
✓ |
2.879 |
|
\[
{}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0
\] |
[_linear] |
✓ |
4.310 |
|
\[
{}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x}
\] |
[_separable] |
✓ |
1.993 |
|
\[
{}x y^{\prime }+y = -2 x^{6} y^{4}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
3.390 |
|
\[
{}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0
\] |
[_separable] |
✓ |
2.633 |
|
\[
{}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{x t}
\] |
[_separable] |
✓ |
2.034 |
|
\[
{}x y^{\prime }-2 y = 2 x^{4}
\] |
[_linear] |
✓ |
1.720 |
|
\[
{}y^{\prime }+3 x^{2} y = x^{2}
\] |
[_separable] |
✓ |
1.334 |
|
\[
{}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0
\] |
[_linear] |
✓ |
1.871 |
|
\[
{}2 x \left (y+1\right )-\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.535 |
|
\[
{}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2}
\] |
[_linear] |
✓ |
2.118 |
|
\[
{}x^{\prime }-x = \sin \left (2 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
1.578 |
|
\[
{}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
4.394 |
|
\[
{}x y^{\prime }+y = \left (x y\right )^{{3}/{2}}
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
11.519 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.631 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} 5 & 0\le x <10 \\ 1 & 10\le x \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.776 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.643 |
|
\[
{}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right .
\] |
[_linear] |
✓ |
0.625 |
|
\[
{}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.162 |
|
\[
{}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
1.947 |
|
\[
{}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1
\] |
[‘y=_G(x,y’)‘] |
✓ |
1.758 |
|
\[
{}\left (y+1\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x
\] |
[_separable] |
✓ |
1.853 |
|
\[
{}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x
\] |
[_Riccati] |
✓ |
2.094 |
|
\[
{}y^{\prime } = -y^{2}+x y+1
\] |
[_Riccati] |
✓ |
1.344 |
|
\[
{}y^{\prime } = -8 x y^{2}+4 x \left (1+4 x \right ) y-8 x^{3}-4 x^{2}+1
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
2.437 |
|
\[
{}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.467 |
|
\[
{}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0
\] |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
2.739 |
|
\[
{}y-1+x \left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.397 |
|
\[
{}x^{2}-2 y+x y^{\prime } = 0
\] |
[_linear] |
✓ |
1.046 |
|
\[
{}3 x -5 y+\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
6.379 |
|
\[
{}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.017 |
|
\[
{}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.376 |
|
\[
{}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
3.781 |
|
\[
{}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y}
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
3.579 |
|
\[
{}\left (x +1\right ) y^{\prime }+x y = {\mathrm e}^{-x}
\] |
[_linear] |
✓ |
1.987 |
|
\[
{}y^{\prime } = \frac {2 x -7 y}{3 y-8 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.784 |
|
\[
{}x^{2} y^{\prime }+x y = x y^{3}
\] |
[_separable] |
✓ |
4.464 |
|
\[
{}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2}
\] |
[_separable] |
✓ |
1.410 |
|
\[
{}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
16.664 |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
10.146 |
|
\[
{}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0
\] |
[_separable] |
✓ |
3.224 |
|
\[
{}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0
\] |
[_exact, _Bernoulli] |
✓ |
3.383 |
|
\[
{}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0
\] |
[_exact, _rational] |
✓ |
22.013 |
|
\[
{}4 x y y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
4.117 |
|
\[
{}y^{\prime } = \frac {2 x +7 y}{2 x -2 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
5.955 |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}+1}
\] |
[_separable] |
✓ |
2.158 |
|
\[
{}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0<x \end {array}\right .
\] |
[[_linear, ‘class A‘]] |
✓ |
0.629 |
|
\[
{}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2<x \end {array}\right .
\] |
[_linear] |
✓ |
0.638 |
|
\[
{}x^{2} y^{\prime }+x y = \frac {y^{3}}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
171.098 |
|
\[
{}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.543 |
|
\[
{}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
✓ |
2.190 |
|
\[
{}y^{2} \left (x +1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.268 |
|
\[
{}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0
\] |
[_rational] |
✓ |
2.301 |
|
\[
{}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
2.130 |
|
\[
{}8 y^{3} x^{2}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.850 |
|
\[
{}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.520 |
|
\[
{}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.421 |
|
\[
{}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.990 |
|
\[
{}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
3.546 |
|
\[
{}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.235 |
|
\[
{}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
13.414 |
|
\[
{}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.733 |
|
\[
{}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.574 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.342 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
298.484 |
|
\[
{}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.589 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.840 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.164 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.184 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.587 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.838 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.068 |
|
\[
{}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.124 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.311 |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.314 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.331 |
|
\[
{}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.347 |
|
\[
{}\left (2 x +1\right ) y^{\prime \prime }-4 \left (x +1\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.346 |
|
\[
{}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.348 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.136 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.103 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.804 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.829 |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.846 |
|
\[
{}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.849 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.074 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.069 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.819 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.845 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.878 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.786 |
|
\[
{}y^{\prime \prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.973 |
|
\[
{}4 y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.963 |
|
\[
{}y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.073 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.067 |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.073 |
|
\[
{}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.084 |
|