2.2.131 Problems 13001 to 13100

Table 2.263: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13001

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-6 x+4 y \end {array}\right ] \]

system_of_ODEs

0.381

13002

\[ {}\left [\begin {array}{c} x^{\prime }=-11 x-2 y \\ y^{\prime }=13 x-9 y \end {array}\right ] \]

system_of_ODEs

0.457

13003

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-5 y \\ y^{\prime }=10 x-3 y \end {array}\right ] \]

system_of_ODEs

0.384

13004

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.270

13005

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+2 y \\ y^{\prime }=-2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.273

13006

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-y \\ y^{\prime }=x-5 y \end {array}\right ] \]

system_of_ODEs

0.265

13007

\[ {}\left [\begin {array}{c} x^{\prime }=13 x \\ y^{\prime }=13 y \end {array}\right ] \]

system_of_ODEs

0.205

13008

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.282

13009

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.223

13010

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.006

13011

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.954

13012

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.459

13013

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

1.100

13014

\[ {}y-y^{\prime } x = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.533

13015

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

0.901

13016

\[ {}\sin \left (x \right ) y+y^{\prime } \cos \left (x \right ) = 1 \]

[_linear]

1.816

13017

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.326

13018

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1.055

13019

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.752

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

3.576

13021

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

0.753

13022

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8.710

13023

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

0.214

13024

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

3.042

13025

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

0.705

13026

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

6.250

13027

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

1.464

13028

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

0.511

13029

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.241

13030

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

1.554

13031

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

1.141

13032

\[ {}y^{\prime } = x y^{3}+x^{2} \]
i.c.

[_Abel]

0.422

13033

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

0.973

13034

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.083

13035

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

[_quadrature]

0.471

13036

\[ {}y = 5 y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.346

13037

\[ {}y^{\prime } = x -y^{2} \]
i.c.

[[_Riccati, _special]]

1.332

13038

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.133

13039

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.724

13040

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

1.238

13041

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.861

13042

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.450

13043

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.356

13044

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.311

13045

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

1.545

13046

\[ {}y = x^{2}+2 y^{\prime } x +\frac {{y^{\prime }}^{2}}{2} \]

[[_homogeneous, ‘class G‘]]

9.994

13047

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.672

13048

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

[_quadrature]

0.700

13049

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

1.086

13050

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.071

13051

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.743

13052

\[ {}y^{\prime } = \frac {x +y-3}{1-x +y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.432

13053

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

1.930

13054

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y x -\cos \left (x \right ) = 0 \]

[_linear]

2.616

13055

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.184

13056

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

1.051

13057

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.724

13058

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.158

13059

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.426

13060

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.323

13061

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

1.042

13062

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]
i.c.

[[_2nd_order, _missing_x]]

2.049

13063

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.291

13064

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.063

13065

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.687

13066

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

1.376

13067

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.091

13068

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.187

13069

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.069

13070

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.676

13071

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.055

13072

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.126

13073

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.517

13074

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.101

13075

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

[[_high_order, _with_linear_symmetries]]

0.109

13076

\[ {}y^{\prime \prime }+4 y x = 0 \]

[[_Emden, _Fowler]]

0.440

13077

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.886

13078

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.185

13079

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.969

13080

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.546

13081

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.633

13082

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.385

13083

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

1.484

13084

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.834

13085

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.849

13086

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.114

13087

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.331

13088

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.126

13089

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.136

13090

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

[[_2nd_order, _missing_x]]

0.274

13091

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

[[_high_order, _missing_y]]

0.118

13092

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.979

13093

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.787

13094

\[ {}x^{3} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.309

13095

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

0.123

13096

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

[[_2nd_order, _quadrature]]

1.088

13097

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.342

13098

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.244

13099

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

0.154

13100

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.150