2.2.132 Problems 13101 to 13200

Table 2.265: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13101

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

13102

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_high_order, _missing_x]]

0.076

13103

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

0.080

13104

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

[[_high_order, _missing_x]]

0.082

13105

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.087

13106

\[ {}y^{\left (5\right )} = 0 \]

[[_high_order, _quadrature]]

0.037

13107

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.431

13108

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.339

13109

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.060

13110

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.437

13111

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.202

13112

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.190

13113

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.187

13114

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.208

13115

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.125

13116

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.772

13117

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.555

13118

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.552

13119

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.329

13120

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.656

13121

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.138

13122

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.085

13123

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.152

13124

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.085

13125

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.080

13126

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

[[_high_order, _missing_x]]

0.082

13127

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

22.157

13128

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.203

13129

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.491

13130

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.330

13131

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

36.953

13132

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.653

13133

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.173

13134

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.720

13135

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

0.118

13136

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.138

13137

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.246

13138

\[ {}4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.127

13139

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.825

13140

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.386

13141

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.145

13142

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.192

13143

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.895

13144

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

[[_high_order, _missing_y]]

0.168

13145

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.187

13146

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.154

13147

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.196

13148

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.575

13149

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]

[[_high_order, _missing_y]]

0.184

13150

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+7 y^{\prime \prime }-5 y^{\prime }+6 y = 5 \sin \left (x \right )-12 \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.203

13151

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.333

13152

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.710

13153

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.345

13154

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.281

13155

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.448

13156

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.451

13157

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5.942

13158

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5.771

13159

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13.431

13160

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.849

13161

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.411

13162

\[ {}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.806

13163

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.312

13164

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.078

13165

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 3 x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.336

13166

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }-4 y = 8 x^{2}+3-6 \,{\mathrm e}^{2 x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.219

13167

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.279

13168

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.353

13169

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.796

13170

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

65.326

13171

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

99.947

13172

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{x}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \]

[[_3rd_order, _missing_y]]

0.256

13173

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x \,{\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.253

13174

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}+3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.190

13175

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2} \sin \left (2 x \right )+x^{4} {\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

34.312

13176

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+5 y^{\prime \prime \prime \prime } = x^{3}+x^{2} {\mathrm e}^{-x}+{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_high_order, _missing_y]]

34.859

13177

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.184

13178

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{x \sqrt {2}} \sin \left (x \sqrt {2}\right )+{\mathrm e}^{-x \sqrt {2}} \cos \left (x \sqrt {2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2.705

13179

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.992

13180

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.253

13181

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.073

13182

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.364

13183

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.813

13184

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.942

13185

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.434

13186

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.648

13187

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.661

13188

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.611

13189

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.128

13190

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.188

13191

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.245

13192

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.858

13193

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.914

13194

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.599

13195

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

36.644

13196

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.256

13197

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.305

13198

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.410

13199

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.600

13200

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.678