2.2.132 Problems 13101 to 13200

Table 2.265: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13101

xx8x=0

[[_3rd_order, _missing_x]]

0.096

13102

x+x=2et+3t2

[[_3rd_order, _missing_y]]

0.119

13103

x8x=0

[[_3rd_order, _missing_x]]

0.060

13104

x+xx4x=0
i.c.

[[_3rd_order, _missing_x]]

0.371

13105

x+5x=Heaviside(t2)
i.c.

[[_linear, ‘class A‘]]

0.609

13106

x+x=sin(2t)
i.c.

[[_linear, ‘class A‘]]

0.520

13107

xx6x=0
i.c.

[[_2nd_order, _missing_x]]

0.318

13108

x2x+2x=0
i.c.

[[_2nd_order, _missing_x]]

0.325

13109

x2x+2x=et
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.326

13110

xx=0
i.c.

[[_2nd_order, _missing_x]]

0.174

13111

x+2x5+2x=1Heaviside(t5)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.338

13112

x+9x=sin(3t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

13113

x2x=1
i.c.

[[_2nd_order, _missing_x]]

0.331

13114

x=2x+Heaviside(t1)
i.c.

[[_linear, ‘class A‘]]

0.561

13115

x+4x=cos(2t)Heaviside(2πt)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.842

13116

x=x2Heaviside(t1)
i.c.

[[_linear, ‘class A‘]]

0.613

13117

x=x+Heaviside(t1)Heaviside(t2)
i.c.

[[_linear, ‘class A‘]]

0.774

13118

x+π2x=π2Heaviside(t+1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.935

13119

x4x=1Heaviside(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.882

13120

x+3x+2x=e4t
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.317

13121

x+3x=δ(t1)+Heaviside(4+t)
i.c.

[[_linear, ‘class A‘]]

0.791

13122

xx=δ(t5)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

13123

x+x=δ(t2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.545

13124

x+4x=δ(t2)δ(t5)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.674

13125

x+x=3δ(t2π)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.643

13126

y+y+y=δ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.006

13127

x+4x=(t5)Heaviside(t5)5+(2t5)Heaviside(t10)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.169

13128

[x=3yy=2x]

system_of_ODEs

0.533

13129

[x=2yy=4x]

system_of_ODEs

0.524

13130

[x=3xy=2y]

system_of_ODEs

0.411

13131

[x=4yy=2y]

system_of_ODEs

0.416

13132

[x=xy=x+2y]

system_of_ODEs

0.439

13133

[x=xyy=x+y]

system_of_ODEs

0.482

13134

[x=x+2yy=x]

system_of_ODEs

0.445

13135

[x=x2yy=2xy]

system_of_ODEs

0.508

13136

[x=2x3yy=x+4y]

system_of_ODEs

0.615

13137

[x=3yy=2x+y]

system_of_ODEs

0.475

13138

[x=2xy=x]

system_of_ODEs

0.405

13139

[x=2xyy=4y]

system_of_ODEs

0.444

13140

[x=x2yy=2x+4y]

system_of_ODEs

0.450

13141

[x=6yy=6y]

system_of_ODEs

0.416

13142

[x=2x+3yy=x14]

system_of_ODEs

1.237

13143

[x=3y3xy=x+2y1]

system_of_ODEs

0.969

13144

[x=yxy=3y]

system_of_ODEs

0.449

13145

[x=xy=3x4y]

system_of_ODEs

0.448

13146

[x=yxy=x2y]

system_of_ODEs

0.591

13147

[x=x+yy=3y3x]

system_of_ODEs

0.707

13148

[x=x2yy=3x4y]
i.c.

system_of_ODEs

0.574

13149

[x=5xyy=3x+y]
i.c.

system_of_ODEs

0.582

13150

[x=3x+yy=3y]

system_of_ODEs

0.351

13151

[x=xyy=x+3y]

system_of_ODEs

0.440

13152

[x=x+2yy=3x+2y]

system_of_ODEs

0.454

13153

[x=3x+4yy=3y]

system_of_ODEs

0.406

13154

[x=2x+2yy=6x+3y]

system_of_ODEs

0.470

13155

[x=5x+3yy=2x10y]

system_of_ODEs

0.479

13156

[x=2xy=2y]

system_of_ODEs

0.305

13157

[x=3x2yy=4xy]

system_of_ODEs

0.542

13158

[x=5x4yy=x+y]

system_of_ODEs

0.433

13159

[x=9yy=x]

system_of_ODEs

0.498

13160

[x=2x+yy=x]
i.c.

system_of_ODEs

0.540

13161

[x=x2yy=2x+4y]

system_of_ODEs

0.446

13162

[x=3xy+1y=x+y+2]
i.c.

system_of_ODEs

0.667

13163

[x=5x+3y+ety=2x10y]

system_of_ODEs

0.509

13164

[x=yy=x+cos(wt)]

system_of_ODEs

0.778

13165

[x=3x+2y+3y=7x+5y+2t]

system_of_ODEs

0.914

13166

[x=x3yy=3x+7y]

system_of_ODEs

0.436

13167

y+y=x+1

[[_linear, ‘class A‘]]

1.514

13168

y7y+12y=0

[[_2nd_order, _missing_x]]

0.846

13169

y3y+2y=4x2

[[_2nd_order, _with_linear_symmetries]]

1.148

13170

(x2+1)y+4xy+2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.870

13171

2xyy+x2+y2=0

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

58.829

13172

xy+y=x3y3

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.405

13173

y+3y=3x2e3x

[[_linear, ‘class A‘]]

1.882

13174

y+4xy=8x

[_separable]

1.505

13175

y2y8y=0

[[_2nd_order, _missing_x]]

0.845

13176

y2y4y+8y=0

[[_3rd_order, _missing_x]]

0.054

13177

y3y4y+12y=0

[[_3rd_order, _missing_x]]

0.063

13178

x3y+2x2y10xy8y=0

[[_3rd_order, _fully, _exact, _linear]]

0.116

13179

y+2y=6ex+4xe2x

[[_linear, ‘class A‘]]

1.707

13180

y4y+4y=8sin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.437

13181

y24y=0

[_quadrature]

0.371

13182

y+y6y=0
i.c.

[[_2nd_order, _missing_x]]

1.430

13183

y+y=2xex
i.c.

[[_linear, ‘class A‘]]

2.069

13184

y+y=2xex
i.c.

[[_linear, ‘class A‘]]

2.169

13185

yy12y=0
i.c.

[[_2nd_order, _missing_x]]

1.417

13186

y+y=0
i.c.

[[_2nd_order, _missing_x]]

1.638

13187

y+y=0
i.c.

[[_2nd_order, _missing_x]]

1.634

13188

y+y=0
i.c.

[[_2nd_order, _missing_x]]

1.464

13189

x3y3x2y+6xy6y=0
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.179

13190

y=x2sin(y)
i.c.

[_separable]

3.608

13191

y=y22+x
i.c.

[_separable]

2.594

13192

y=y1/3
i.c.

[_quadrature]

2.236

13193

3x+2y+(2x+y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.781

13194

y2+3+(2xy4)y=0

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.563

13195

2xy+1+(x2+4y)y=0

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.307

13196

3x2y+2(x3+y)y=0

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.213

13197

6xy+2y25+(3x2+4xy6)y=0

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.757

13198

ysec(x)2+sec(x)tan(x)+(tan(x)+2y)y=0

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

12.647

13199

xy2+x+(x2y3+y)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.036

13200

(2s1)st+ss2t2=0

[_separable]

3.924