2.2.132 Problems 13101 to 13200

Table 2.265: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13101

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.292

13102

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[[_2nd_order, _missing_y]]

0.549

13103

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.700

13104

\[ {}y^{\prime \prime } = 2 y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.169

13105

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.244

13106

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x \end {array}\right ] \]
i.c.

system_of_ODEs

0.362

13107

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y={\mathrm e}^{t} \\ y^{\prime }-x-3 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.882

13108

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=z \\ z^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.746

13109

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.053

13110

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

1.345

13111

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

1.656

13112

\[ {}y^{\prime } = \sin \left (y x \right ) \]

[‘y=_G(x,y’)‘]

0.653

13113

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

[_separable]

2.019

13114

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.919

13115

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.293

13116

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

[‘y=_G(x,y’)‘]

0.633

13117

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

1.128

13118

\[ {}y^{\prime } = \ln \left (y x \right ) \]

[‘y=_G(x,y’)‘]

0.385

13119

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

2.139

13120

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.801

13121

\[ {}y^{\prime \prime \prime }+y x = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.044

13122

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.133

13123

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

[[_high_order, _missing_y]]

0.145

13124

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.042

13125

\[ {}y^{\prime \prime \prime }+y x = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.059

13126

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

73.818

13127

\[ {}y^{\prime \prime \prime }+y x = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.043

13128

\[ {}y y^{\prime } = 1 \]

[_quadrature]

0.485

13129

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

[‘y=_G(x,y’)‘]

1.336

13130

\[ {}5 y^{\prime }-y x = 0 \]

[_separable]

1.068

13131

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.101

13132

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

13133

\[ {}y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

0.083

13134

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.863

13135

\[ {}y^{\prime \prime } = y+x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.955

13136

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

[NONE]

0.045

13137

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

[‘y=_G(x,y’)‘]

2.816

13138

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.046

13139

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = y x \]

[NONE]

0.120

13140

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.487

13141

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

[NONE]

0.020

13142

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.013

13143

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.105

13144

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.736

13145

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.069

13146

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.196

13147

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.073

13148

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.895

13149

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.492

13150

\[ {}\sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.882

13151

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

13152

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.149

13153

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.513

13154

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.086

13155

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.935

13156

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.799

13157

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 y x = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.602

13158

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.830

13159

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.689

13160

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.490

13161

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.348

13162

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.608

13163

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.361

13164

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.161

13165

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.881

13166

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.069

13167

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.097

13168

\[ {}\frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.411

13169

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

78.845

13170

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.647

13171

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.501

13172

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.884

13173

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.517

13174

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

3.846

13175

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (x +2\right ) y}{x^{2} \left (x +1\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.171

13176

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.232

13177

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.311

13178

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.627

13179

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.299

13180

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.805

13181

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.304

13182

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.333

13183

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.272

13184

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.315

13185

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.282

13186

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.359

13187

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.286

13188

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.311

13189

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.317

13190

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.350

13191

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.254

13192

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.506

13193

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.314

13194

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.286

13195

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.285

13196

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.287

13197

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.402

13198

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.302

13199

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.352

13200

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.224