# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.967 |
|
\[
{}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.288 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.437 |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.413 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.424 |
|
\[
{}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.415 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
4.487 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.451 |
|
\[
{}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.407 |
|
\[
{}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.436 |
|
\[
{}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.426 |
|
\[
{}2 y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.299 |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.757 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.663 |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
4.776 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.835 |
|
\[
{}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.825 |
|
\[
{}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.628 |
|
\[
{}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.087 |
|
\[
{}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.084 |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.087 |
|
\[
{}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.109 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.288 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.092 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.102 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.100 |
|
\[
{}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.094 |
|
\[
{}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.183 |
|
\[
{}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
4.093 |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.316 |
|
\[
{}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.120 |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
3.999 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.232 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.668 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.637 |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.630 |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.537 |
|
\[
{}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
10.728 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.773 |
|
\[
{}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.868 |
|
\[
{}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.263 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.914 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.638 |
|
\[
{}y^{\prime \prime }+4 y = g \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.879 |
|
\[
{}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
3.816 |
|
\[
{}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.369 |
|
\[
{}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.299 |
|
\[
{}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.975 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.908 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.881 |
|
\[
{}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.379 |
|
\[
{}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
4.610 |
|
\[
{}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.197 |
|
\[
{}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.163 |
|
\[
{}u^{\prime \prime }+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
5.400 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.336 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
49.521 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
54.864 |
|
\[
{}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
56.246 |
|
\[
{}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right )
\] |
[NONE] |
✗ |
0.059 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.288 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.339 |
|
\[
{}y^{\prime \prime }+k^{2} x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.329 |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.467 |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.427 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.355 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.335 |
|
\[
{}\left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.374 |
|
\[
{}\left (-x^{2}+3\right ) y^{\prime \prime }-3 y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.446 |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.365 |
|
\[
{}2 y^{\prime \prime }+y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.385 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.288 |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.335 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.293 |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.349 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +\lambda y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.474 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.342 |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.352 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.288 |
|
\[
{}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.411 |
|
\[
{}y^{\prime \prime }+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.274 |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.411 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.321 |
|
\[
{}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.662 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.823 |
|
\[
{}y^{\prime \prime }+x^{2} y^{\prime }+\sin \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.785 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+6 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.511 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+6 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.581 |
|
\[
{}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.605 |
|
\[
{}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.706 |
|
\[
{}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.688 |
|
\[
{}\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.539 |
|
\[
{}\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.789 |
|
\[
{}x y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.489 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.572 |
|
\[
{}y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
0.216 |
|
\[
{}y^{\prime }-y x = 0
\] |
[_separable] |
✓ |
0.228 |
|
\[
{}\left (1-x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
0.246 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
0.641 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{10}+\frac {3 x_{2}}{40} \\ x_{2}^{\prime }=\frac {x_{1}}{10}-\frac {x_{2}}{5} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.381 |
|