2.2.15 Problems 1401 to 1500

Table 2.31: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1401

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.565

1402

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.487

1403

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.484

1404

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=\frac {9 x_{1}}{5}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.605

1405

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.511

1406

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=-5 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.494

1407

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=3 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.555

1408

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }=x_{1}-x_{2} \\ x_{3}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

1.098

1409

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.628

1410

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.617

1411

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {3 x_{1}}{4}-2 x_{2} \\ x_{2}^{\prime }=x_{1}-\frac {5 x_{2}}{4} \end {array}\right ] \]

system_of_ODEs

0.503

1412

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {4 x_{1}}{5}+2 x_{2} \\ x_{2}^{\prime }=-x_{1}+\frac {6 x_{2}}{5} \end {array}\right ] \]

system_of_ODEs

0.512

1413

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{4}+x_{2} \\ x_{2}^{\prime }=-x_{1}-\frac {x_{2}}{4} \\ x_{3}^{\prime }=-\frac {x_{3}}{4} \end {array}\right ] \]

system_of_ODEs

0.486

1414

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{4}+x_{2} \\ x_{2}^{\prime }=-x_{1}-\frac {x_{2}}{4} \\ x_{3}^{\prime }=\frac {x_{3}}{10} \end {array}\right ] \]

system_of_ODEs

0.504

1415

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}-\frac {x_{2}}{8} \\ x_{2}^{\prime }=2 x_{1}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.499

1416

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.408

1417

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-2 x_{2} \\ x_{2}^{\prime }=8 x_{1}-4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.353

1418

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {3 x_{1}}{2}+x_{2} \\ x_{2}^{\prime }=-\frac {x_{1}}{4}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.401

1419

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {5 x_{1}}{2}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.398

1420

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.480

1421

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.348

1422

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}-7 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.513

1423

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {5 x_{1}}{2}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {3 x_{1}}{2}+\frac {x_{2}}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.582

1424

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {3 x_{1}}{2}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.589

1425

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+9 x_{2} \\ x_{2}^{\prime }=-x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.463

1426

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=-4 x_{1}+x_{2} \\ x_{3}^{\prime }=3 x_{1}+6 x_{2}+2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.483

1427

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {5 x_{1}}{2}+x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}-\frac {5 x_{2}}{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2}-\frac {5 x_{3}}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.444

1428

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}+t \end {array}\right ] \]

system_of_ODEs

0.517

1429

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.603

1430

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.826

1431

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.552

1432

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-2 x_{2}+\frac {1}{t^{3}} \\ x_{2}^{\prime }=8 x_{1}-4 x_{2}-\frac {1}{t^{2}} \end {array}\right ] \]

system_of_ODEs

0.457

1433

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+2 x_{2}+\frac {1}{t} \\ x_{2}^{\prime }=2 x_{1}-x_{2}+\frac {2}{t}+4 \end {array}\right ] \]

system_of_ODEs

0.527

1434

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+2 \,{\mathrm e}^{t} \\ x_{2}^{\prime }=4 x_{1}+x_{2}-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.503

1435

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.500

1436

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {5 x_{1}}{4}+\frac {3 x_{2}}{4}+2 t \\ x_{2}^{\prime }=\frac {3 x_{1}}{4}-\frac {5 x_{2}}{4}+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.515

1437

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+\sqrt {2}\, x_{2}+{\mathrm e}^{-t} \\ x_{2}^{\prime }=\sqrt {2}\, x_{1}-2 x_{2}-{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.584

1438

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.898

1439

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}+\csc \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\sec \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.133

1440

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}-\frac {x_{2}}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2} \\ x_{2}^{\prime }=2 x_{1}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.615

1441

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+3 t \end {array}\right ] \]
i.c.

system_of_ODEs

0.539

1442

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.439

1443

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.449

1444

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.415

1445

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}-7 x_{2} \end {array}\right ] \]

system_of_ODEs

0.398

1446

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.489

1447

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.461

1448

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.506

1449

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2} \\ x_{2}^{\prime }=-\frac {5 x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.407

1450

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.392

1451

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=-5 x_{1} \end {array}\right ] \]

system_of_ODEs

0.719

1452

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1} \\ x_{2}^{\prime }=-x_{2} \end {array}\right ] \]

system_of_ODEs

0.315

1453

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=\frac {9 x_{1}}{5}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.614

1454

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-2 \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.766

1455

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}-2 \\ x_{2}^{\prime }=x_{1}-2 x_{2}+1 \end {array}\right ] \]

system_of_ODEs

0.602

1456

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}-1 \\ x_{2}^{\prime }=2 x_{1}-x_{2}+5 \end {array}\right ] \]

system_of_ODEs

0.894

1457

\[ {}\left [\begin {array}{c} x^{\prime }=-x \\ y^{\prime }=-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.488

1458

\[ {}\left [\begin {array}{c} x^{\prime }=-x \\ y^{\prime }=2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.481

1459

\[ {}\left [\begin {array}{c} x^{\prime }=-x \\ y^{\prime }=2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.493

1460

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.490

1461

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.490

1462

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

0.168

1463

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.070

1464

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

1465

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.074

1466

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.161

1467

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.130

1468

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

0.123

1469

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

1470

\[ {}\left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

1471

\[ {}t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (1+t \right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.066

1472

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.072

1473

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.095

1474

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.072

1475

\[ {}y^{\left (6\right )}+y = 0 \]

[[_high_order, _missing_x]]

0.115

1476

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.083

1477

\[ {}y^{\left (6\right )}-y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.081

1478

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.082

1479

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.108

1480

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.093

1481

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.079

1482

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]

[[_high_order, _missing_x]]

0.083

1483

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.254

1484

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.251

1485

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.315

1486

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.461

1487

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.319

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.305

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.507

1490

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.289

1491

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.321

1492

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.332

1493

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.587

1494

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.724

1495

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.439

1496

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.386

1497

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

1498

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.727

1499

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.526

1500

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.640