2.2.15 Problems 1401 to 1500

Table 2.31: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1401

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.438

1402

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.343

1403

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.354

1404

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=\frac {9 x_{1}}{5}-x_{2} \end {array}\right ] \]

system_of_ODEs

3.029

1405

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.472

1406

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=-5 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.372

1407

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-2 x_{3} \\ x_{3}^{\prime }=3 x_{1}+2 x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.589

1408

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }=x_{1}-x_{2} \\ x_{3}^{\prime }=-2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

1.746

1409

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.389

1410

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }=-x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

2.989

1411

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {3 x_{1}}{4}-2 x_{2} \\ x_{2}^{\prime }=x_{1}-\frac {5 x_{2}}{4} \end {array}\right ] \]

system_of_ODEs

0.405

1412

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {4 x_{1}}{5}+2 x_{2} \\ x_{2}^{\prime }=-x_{1}+\frac {6 x_{2}}{5} \end {array}\right ] \]

system_of_ODEs

0.398

1413

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{4}+x_{2} \\ x_{2}^{\prime }=-x_{1}-\frac {x_{2}}{4} \\ x_{3}^{\prime }=-\frac {x_{3}}{4} \end {array}\right ] \]

system_of_ODEs

0.547

1414

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{4}+x_{2} \\ x_{2}^{\prime }=-x_{1}-\frac {x_{2}}{4} \\ x_{3}^{\prime }=\frac {x_{3}}{10} \end {array}\right ] \]

system_of_ODEs

0.487

1415

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}-\frac {x_{2}}{8} \\ x_{2}^{\prime }=2 x_{1}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.371

1416

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.262

1417

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-2 x_{2} \\ x_{2}^{\prime }=8 x_{1}-4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.311

1418

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {3 x_{1}}{2}+x_{2} \\ x_{2}^{\prime }=-\frac {x_{1}}{4}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

2.889

1419

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {5 x_{1}}{2}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.277

1420

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }=2 x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{2}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.533

1421

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.386

1422

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}-7 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.339

1423

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {5 x_{1}}{2}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {3 x_{1}}{2}+\frac {x_{2}}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.324

1424

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }=-\frac {3 x_{1}}{2}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.355

1425

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}+9 x_{2} \\ x_{2}^{\prime }=-x_{1}-3 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.272

1426

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1} \\ x_{2}^{\prime }=-4 x_{1}+x_{2} \\ x_{3}^{\prime }=3 x_{1}+6 x_{2}+2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

2.993

1427

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {5 x_{1}}{2}+x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}-\frac {5 x_{2}}{2}+x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2}-\frac {5 x_{3}}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.464

1428

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}+t \end {array}\right ] \]

system_of_ODEs

0.583

1429

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+\sqrt {3}\, x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=\sqrt {3}\, x_{1}-x_{2}+\sqrt {3}\, {\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.681

1430

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}-\cos \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.093

1431

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+{\mathrm e}^{-2 t} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2}-2 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.603

1432

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-2 x_{2}+\frac {1}{t^{3}} \\ x_{2}^{\prime }=8 x_{1}-4 x_{2}-\frac {1}{t^{2}} \end {array}\right ] \]

system_of_ODEs

3.156

1433

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}+2 x_{2}+\frac {1}{t} \\ x_{2}^{\prime }=2 x_{1}-x_{2}+\frac {2}{t}+4 \end {array}\right ] \]

system_of_ODEs

0.563

1434

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+2 \,{\mathrm e}^{t} \\ x_{2}^{\prime }=4 x_{1}+x_{2}-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.567

1435

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.520

1436

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {5 x_{1}}{4}+\frac {3 x_{2}}{4}+2 t \\ x_{2}^{\prime }=\frac {3 x_{1}}{4}-\frac {5 x_{2}}{4}+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.585

1437

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+\sqrt {2}\, x_{2}+{\mathrm e}^{-t} \\ x_{2}^{\prime }=\sqrt {2}\, x_{1}-2 x_{2}-{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.701

1438

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

3.649

1439

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2}+\csc \left (t \right ) \\ x_{2}^{\prime }=x_{1}-2 x_{2}+\sec \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.747

1440

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{2}-\frac {x_{2}}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2} \\ x_{2}^{\prime }=2 x_{1}-\frac {x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.745

1441

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+3 t \end {array}\right ] \]
i.c.

system_of_ODEs

0.572

1442

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

2.895

1443

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.304

1444

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.296

1445

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-4 x_{2} \\ x_{2}^{\prime }=4 x_{1}-7 x_{2} \end {array}\right ] \]

system_of_ODEs

0.273

1446

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.373

1447

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.329

1448

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.369

1449

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2} \\ x_{2}^{\prime }=-\frac {5 x_{2}}{2} \end {array}\right ] \]

system_of_ODEs

0.286

1450

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.296

1451

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{2} \\ x_{2}^{\prime }=-5 x_{1} \end {array}\right ] \]

system_of_ODEs

3.656

1452

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1} \\ x_{2}^{\prime }=-x_{2} \end {array}\right ] \]

system_of_ODEs

0.187

1453

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }=\frac {9 x_{1}}{5}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.388

1454

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-2 \\ x_{2}^{\prime }=x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.737

1455

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}-2 \\ x_{2}^{\prime }=x_{1}-2 x_{2}+1 \end {array}\right ] \]

system_of_ODEs

0.463

1456

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-x_{2}-1 \\ x_{2}^{\prime }=2 x_{1}-x_{2}+5 \end {array}\right ] \]

system_of_ODEs

0.915

1457

\[ {}\left [\begin {array}{c} x^{\prime }=-x \\ y^{\prime }=-2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.314

1458

\[ {}\left [\begin {array}{c} x^{\prime }=-x \\ y^{\prime }=2 y \end {array}\right ] \]
i.c.

system_of_ODEs

2.900

1459

\[ {}\left [\begin {array}{c} x^{\prime }=-x \\ y^{\prime }=2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.264

1460

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.348

1461

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.322

1462

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

[[_high_order, _with_linear_symmetries]]

0.206

1463

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.027

1464

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.050

1465

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.049

1466

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.306

1467

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.145

1468

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

[[_3rd_order, _missing_x]]

0.115

1469

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.049

1470

\[ {}\left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

1471

\[ {}t^{2} \left (t +3\right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (1+t \right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.061

1472

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.048

1473

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.068

1474

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.053

1475

\[ {}y^{\left (6\right )}+y = 0 \]

[[_high_order, _missing_x]]

0.095

1476

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.072

1477

\[ {}y^{\left (6\right )}-y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

1478

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.062

1479

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.092

1480

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.061

1481

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.053

1482

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]

[[_high_order, _missing_x]]

0.060

1483

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.249

1484

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.791

1485

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.914

1486

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.192

1487

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.314

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

1.544

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

1.703

1490

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

1491

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.355

1492

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.693

1493

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.954

1494

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.052

1495

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.849

1496

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.820

1497

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

1498

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.888

1499

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

1500

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.170