2.2.161 Problems 16001 to 16100

Table 2.323: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16001

2t+tan(y)+(tt2tan(y))y=0

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.636

16002

2ty2sin(ty)+(cos(ty)tysin(ty))y=0

[_exact]

41.631

16003

1+etyy+ycos(ty)+(1+etyt+tcos(ty))y=0

[_exact]

39.674

16004

2t+2y+(2t+2y)y=0

[_quadrature]

0.881

16005

9t5+2y+(2t+2y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.376

16006

2t+19y10+(19t10+2y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.521

16007

y2+y=ty

[_rational, _Bernoulli]

1.368

16008

y+y=ty2

[_Bernoulli]

1.530

16009

2yty=2ty3cos(t)

[_Bernoulli]

47.981

16010

y+yt=ty3sin(t)

[[_homogeneous, ‘class D‘], _Bernoulli]

47.108

16011

2y+y=cos(t)y

[_Bernoulli]

15.708

16012

3y+y=ysin(t)

[_Bernoulli]

2.061

16013

yyt=ty2

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.794

16014

yyt=y2t2

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.632

16015

yyt=y2t

[_separable]

1.880

16016

yyt=t2y3/2

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7.909

16017

cos(tt+y)+e2yty=0

[[_homogeneous, ‘class A‘], _dAlembert]

29.471

16018

yln(ty)+t2yt+y=0

[[_homogeneous, ‘class A‘], _dAlembert]

5.400

16019

2ln(t)ln(4y2)y=0

[_separable]

4.116

16020

2t+1y+tyy2=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.807

16021

sin(2t)cos(2y)+ln(y)yln(t)=0

[_separable]

9.080

16022

t2+1+yy=0

[_separable]

1.961

16023

2t+(y3t)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

10.669

16024

2y3t+yt=0

[_linear]

1.801

16025

tyy2+t(t3y)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.413

16026

t2+ty+y2tyy=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

70.471

16027

t3+y3ty2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

11.423

16028

y=t+4y4t+y

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.754

16029

ty+yt=0

[_linear]

1.339

16030

y+(t+y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.482

16031

2t27ty+5y2+tyy=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

11.393

16032

y+2t2+y2yt=0

[[_homogeneous, ‘class A‘], _dAlembert]

7.980

16033

y2=(ty4t2)y

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

74.671

16034

y(3ty+t)y=0

[[_homogeneous, ‘class A‘], _dAlembert]

59.064

16035

(t2y2)y+y2+ty=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.172

16036

tyyt2eyty2=0

[[_homogeneous, ‘class A‘], _dAlembert]

2.784

16037

y=12yetyt+ty

[[_homogeneous, ‘class A‘], _dAlembert]

3.451

16038

t(ln(t)ln(y))y=y

[[_homogeneous, ‘class A‘], _dAlembert]

8.150

16039

y+2y=t2y
i.c.

[_Bernoulli]

1.565

16040

2y+y=t2y
i.c.

[_Bernoulli]

2.796

16041

y=4y2t22ty
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.642

16042

t+yyt=0
i.c.

[_linear]

1.613

16043

ytyt2+y2=0
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.989

16044

t3+y2t2+y2tyt2+y2y=0
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

21.505

16045

y3t3ty2y=0
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

82.788

16046

ty3(t4+y4)y=0
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

24.891

16047

y4+(t4ty3)y=0
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.300

16048

1+t2y+(4t3y6)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.301

16049

5t+2y+1+(2t+y+1)y=0

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.824

16050

3ty+1(6t2y3)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.020

16051

2t+3y+1+(4t+6y+1)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.972

16052

y2yx=x2y

[_separable]

1.418

16053

y+cot(x)y=y4
i.c.

[_Bernoulli]

3.172

16054

yty3=y

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.488

16055

yty2(y+yt)2=y+1

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.872

16056

yty1=y2y

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.523

16057

1+yyt=ln(y)

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.012

16058

1+2y2yt=1y2

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.870

16059

y=yt+y55

[_dAlembert]

0.805

16060

y=ty2+3y22y3

[_dAlembert]

9.750

16061

y=t(y+1)+2y+1

[_linear]

1.269

16062

y=t(2y)+2y2+1

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.576

16063

t1/3y2/3+t+(t2/3y1/3+y)y=0

[[_homogeneous, ‘class G‘], _rational]

39.020

16064

y=y2t2ty
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.151

16065

ysin(ty)(t+tsin(ty))y=0
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

9.321

16066

y=2t55y2

[_separable]

2.306

16067

cos(4x)8ysin(y)=0

[_separable]

2.971

16068

yyt=y2t

[_separable]

1.943

16069

y=e8yt

[_separable]

1.339

16070

y=e5ty4

[_separable]

1.346

16071

1x5+1x3=(2y46y9)y

[_separable]

2.053

16072

y=ye2tln(y)

[_separable]

1.619

16073

y=(47x)(2y3)(x1)(2x5)

[_separable]

1.815

16074

3y+y=10sin(t)

[[_linear, ‘class A‘]]

1.385

16075

3t+(t4y)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3.780

16076

yt+(t+y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.724

16077

yx+y=0

[[_linear, ‘class A‘]]

0.922

16078

y2+(t2+ty)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.657

16079

r=r2+t2rt

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.589

16080

x=5txx2+t2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

106.472

16081

t2y+(yt)y=0

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.245

16082

t2y+sin(t)+(t33cos(y))y=0

[_exact]

4.663

16083

tan(y)t+(tsec(y)2+1)y=0

[_exact]

4.384

16084

tln(y)+(t22y+1)y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.680

16085

y+y=5

[_quadrature]

0.683

16086

ty+y=t

[_separable]

1.091

16087

x+xy=y2

[_linear]

1.098

16088

tr+r=tcos(t)

[_linear]

1.326

16089

y+y=ty3

[_Bernoulli]

2.631

16090

y+y=ety2

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.534

16091

y=yt+3y4

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.765

16092

yyt=2y2ln(t)

[[_homogeneous, ‘class D‘], _Bernoulli]

2.386

16093

yyt=2y3

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.496

16094

yyt=4y2

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.471

16095

2xy2+(x+2y)y=0
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.829

16096

cos(ty)+(1cos(ty))y=0
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

68.053

16097

etyy2t+tetyy=0
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.948

16098

sin(y)cos(t)y+(tcos(y)sin(t))y=0
i.c.

[_exact]

9.271

16099

y2+(2ty2cos(y)sin(y))y=0
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.456

16100

yt+ln(y)+(ty+ln(t))y=0
i.c.

[_exact]

2.177