2.2.161 Problems 16001 to 16100

Table 2.323: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16001

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.641

16002

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.592

16003

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.101

16004

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.161

16005

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.185

16006

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.169

16007

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.205

16008

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.507

16009

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.317

16010

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.296

16011

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.277

16012

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.016

16013

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.675

16014

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.229

16015

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.951

16016

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.389

16017

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.579

16018

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.918

16019

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.333

16020

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.692

16021

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.280

16022

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.244

16023

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.294

16024

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

9.627

16025

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.343

16026

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.498

16027

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.100

16028

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.132

16029

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.477

16030

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.912

16031

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

4.245

16032

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.985

16033

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.143

16034

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.059

16035

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.395

16036

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7.030

16037

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

[_Lienard]

0.395

16038

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.955

16039

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.389

16040

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

74.608

16041

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.306

16042

\[ {}\left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

4.366

16043

\[ {}y^{\prime \prime \prime } = 0 \]

[[_3rd_order, _quadrature]]

0.033

16044

\[ {}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.068

16045

\[ {}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.063

16046

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

16047

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

16048

\[ {}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

16049

\[ {}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.071

16050

\[ {}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

16051

\[ {}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

[[_3rd_order, _missing_x]]

0.121

16052

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.062

16053

\[ {}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.065

16054

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.073

16055

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

[[_high_order, _missing_x]]

0.073

16056

\[ {}y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

[[_high_order, _missing_x]]

0.073

16057

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

[[_high_order, _missing_x]]

0.079

16058

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.069

16059

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.072

16060

\[ {}y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.074

16061

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.082

16062

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.083

16063

\[ {}y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.088

16064

\[ {}y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

[[_high_order, _missing_x]]

0.088

16065

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.122

16066

\[ {}y^{\prime \prime \prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.127

16067

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

0.137

16068

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.146

16069

\[ {}24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.150

16070

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.146

16071

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.088

16072

\[ {}8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

0.100

16073

\[ {}2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

0.099

16074

\[ {}y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]
i.c.

[[_high_order, _missing_x]]

0.146

16075

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.157

16076

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

[[_3rd_order, _missing_x]]

0.073

16077

\[ {}y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

[[_high_order, _missing_x]]

0.080

16078

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.122

16079

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.142

16080

\[ {}\frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.517

16081

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.757

16082

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

[[_3rd_order, _missing_y]]

0.100

16083

\[ {}y^{\prime \prime \prime \prime }-16 y = 1 \]

[[_high_order, _missing_x]]

0.105

16084

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.108

16085

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.110

16086

\[ {}y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

[[_high_order, _missing_y]]

0.118

16087

\[ {}y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.908

16088

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.177

16089

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

[[_high_order, _with_linear_symmetries]]

0.128

16090

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

0.125

16091

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

[[_high_order, _with_linear_symmetries]]

0.136

16092

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

0.586

16093

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

0.680

16094

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

[[_high_order, _missing_y]]

0.686

16095

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

[[_high_order, _missing_y]]

0.700

16096

\[ {}y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

[[_3rd_order, _missing_y]]

1.553

16097

\[ {}y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

[[_3rd_order, _missing_y]]

0.615

16098

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

[[_3rd_order, _missing_y]]

0.645

16099

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

[[_3rd_order, _missing_y]]

0.232

16100

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.233