2.2.162 Problems 16101 to 16200

Table 2.325: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16101

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

[[_3rd_order, _with_linear_symmetries]]

0.115

16102

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

[[_3rd_order, _with_linear_symmetries]]

0.125

16103

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.136

16104

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

[[_3rd_order, _missing_y]]

0.137

16105

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

[[_high_order, _missing_x]]

0.115

16106

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

[[_high_order, _missing_y]]

0.610

16107

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]
i.c.

[[_3rd_order, _missing_y]]

0.194

16108

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]
i.c.

[[_high_order, _missing_y]]

0.638

16109

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]
i.c.

[[_3rd_order, _missing_y]]

0.578

16110

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_high_order, _missing_y]]

0.779

16111

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]
i.c.

[[_high_order, _missing_y]]

0.123

16112

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

[[_3rd_order, _missing_y]]

0.501

16113

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t \]

[[_3rd_order, _missing_y]]

0.556

16114

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.411

16115

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}} \]
i.c.

[[_high_order, _missing_y]]

0.564

16116

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.184

16117

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.204

16118

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

1.223

16119

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

[[_Emden, _Fowler]]

1.318

16120

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

[[_Emden, _Fowler]]

0.909

16121

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

2.163

16122

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

[[_Emden, _Fowler]]

2.638

16123

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

2.039

16124

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.146

16125

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.789

16126

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.156

16127

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.145

16128

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.127

16129

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.128

16130

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.125

16131

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.133

16132

\[ {}x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.123

16133

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.126

16134

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.125

16135

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_y]]

0.191

16136

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

1.693

16137

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.872

16138

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.025

16139

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

3.849

16140

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

1.369

16141

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.914

16142

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

2.275

16143

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3.775

16144

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

[[_3rd_order, _with_linear_symmetries]]

0.279

16145

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

[[_3rd_order, _with_linear_symmetries]]

0.277

16146

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.114

16147

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.340

16148

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.942

16149

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.103

16150

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.231

16151

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.227

16152

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.234

16153

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.235

16154

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.406

16155

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.170

16156

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.415

16157

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6.645

16158

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2.051

16159

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.343

16160

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.316

16161

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.132

16162

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.123

16163

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.118

16164

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

[[_3rd_order, _missing_y]]

0.236

16165

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.295

16166

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.869

16167

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.657

16168

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.250

16169

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.548

16170

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.634

16171

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9.090

16172

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.353

16173

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

2.825

16174

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.750

16175

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.824

16176

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.139

16177

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.145

16178

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

[[_high_order, _exact, _linear, _homogeneous]]

0.156

16179

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.155

16180

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.150

16181

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.266

16182

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.332

16183

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0 \]

[[_Emden, _Fowler]]

0.655

16184

\[ {}\left (-2+x \right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.655

16185

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.724

16186

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

[[_2nd_order, _missing_x]]

0.648

16187

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

[[_2nd_order, _missing_x]]

0.597

16188

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.318

16189

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

0.647

16190

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.611

16191

\[ {}\left (2+3 x \right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.597

16192

\[ {}\left (3 x +1\right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.625

16193

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.658

16194

\[ {}y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

[_Hermite]

0.534

16195

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.616

16196

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.601

16197

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.499

16198

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]
i.c.

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.629

16199

\[ {}y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.581

16200

\[ {}y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.661