2.2.17 Problems 1601 to 1700

Table 2.35: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1601

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

28.888

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

5.954

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

3.343

1604

\[ {}y^{\prime }+y = \frac {2 x \,{\mathrm e}^{-x}}{1+y \,{\mathrm e}^{x}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

2.319

1605

\[ {}y^{\prime } x -2 y = \frac {x^{6}}{y+x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.599

1606

\[ {}y^{\prime }-y = \frac {\left (x +1\right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.913

1607

\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-y \,{\mathrm e}^{-2 x}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.431

1608

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \]

[_Riccati]

6.015

1609

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{x}}{x^{2}+y^{2}} \]

[‘y=_G(x,y’)‘]

1.279

1610

\[ {}y^{\prime } = \tan \left (y x \right ) \]

[‘y=_G(x,y’)‘]

0.630

1611

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (y x \right )} \]

[‘y=_G(x,y’)‘]

1.777

1612

\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{{1}/{3}} \]

[‘y=_G(x,y’)‘]

0.765

1613

\[ {}y^{\prime } = 2 y x \]

[_separable]

1.428

1614

\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \]

[‘y=_G(x,y’)‘]

1.103

1615

\[ {}y^{\prime } = \frac {2 x +3 y}{x -4 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.403

1616

\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \]

[‘y=_G(x,y’)‘]

1.152

1617

\[ {}y^{\prime } = x \left (-1+y^{2}\right )^{{2}/{3}} \]

[_separable]

2.058

1618

\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \]

[‘y=_G(x,y’)‘]

0.693

1619

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9.232

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

3.110

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1.046

1622

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

24.742

1623

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

75.652

1624

\[ {}y^{\prime } = 3 x \left (-1+y\right )^{{1}/{3}} \]
i.c.

[_separable]

28.846

1625

\[ {}y^{\prime }-y = x y^{2} \]

[_Bernoulli]

17.567

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

112.202

1627

\[ {}x^{2} y^{\prime } = y^{2}+y x -x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

0.159

1628

\[ {}x^{2} y^{\prime } = y^{2}+y x -x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

38.467

1629

\[ {}y^{\prime }+y = y^{2} \]

[_quadrature]

0.174

1630

\[ {}7 y^{\prime } x -2 y = -\frac {x^{2}}{y^{6}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.227

1631

\[ {}x^{2} y^{\prime }+2 y = 2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \]

[_Bernoulli]

0.718

1632

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x = \frac {1}{\left (x^{2}+1\right ) y} \]

[_rational, _Bernoulli]

0.736

1633

\[ {}y^{\prime }-y x = x^{3} y^{3} \]

[_Bernoulli]

1.017

1634

\[ {}y^{\prime }-\frac {\left (x +1\right ) y}{3 x} = y^{4} \]

[_rational, _Bernoulli]

1.315

1635

\[ {}y^{\prime }-2 y = x y^{3} \]
i.c.

[_Bernoulli]

0.259

1636

\[ {}y^{\prime }-y x = x y^{{3}/{2}} \]
i.c.

[_separable]

81.908

1637

\[ {}y^{\prime } x +y = x^{4} y^{4} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.322

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

5.718

1639

\[ {}y^{\prime }-4 y = \frac {48 x}{y^{2}} \]
i.c.

[_rational, _Bernoulli]

3.475

1640

\[ {}x^{2} y^{\prime }+2 y x = y^{3} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.477

1641

\[ {}y^{\prime }-y = x \sqrt {y} \]
i.c.

[_Bernoulli]

0.757

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

3.165

1643

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

35.943

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

65.801

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

142.908

1646

\[ {}x^{2} y^{\prime } = x^{2}+y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

20.526

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

44.158

1648

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 y x} \]

[[_homogeneous, ‘class A‘]]

88.438

1649

\[ {}y^{\prime } = \frac {y x +y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.365

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

181.540

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

64.231

1652

\[ {}y^{\prime } = \frac {y^{2}-3 y x -5 x^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

53.281

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 y x \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

49.745

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

84.097

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.724

1656

\[ {}\left (y^{\prime } x -y\right ) \left (\ln \left (y\right )-\ln \left (x \right )\right ) = x \]

[[_homogeneous, ‘class A‘]]

220.558

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

230.927

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

45.848

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

40.952

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

620.359

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

200.977

1662

\[ {}x^{2} y^{\prime } = y^{2}+y x -4 x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Riccati]

49.065

1663

\[ {}x y y^{\prime } = x^{2}-y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

53.546

1664

\[ {}y^{\prime } = \frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

183.663

1665

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

78.414

1666

\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

90.202

1667

\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

143.044

1668

\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

73.888

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

46.506

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

73.990

1671

\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

36.209

1672

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

48.726

1673

\[ {}y^{\prime } = \frac {y^{2}+y \tan \left (x \right )+\tan \left (x \right )^{2}}{\sin \left (x \right )^{2}} \]

[_Riccati]

149.065

1674

\[ {}x \ln \left (x \right )^{2} y^{\prime } = -4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

71.321

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

62.687

1676

\[ {}\left (y+{\mathrm e}^{x^{2}}\right ) y^{\prime } = 2 x \left (y^{2}+y \,{\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

44.164

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 x^{2} y^{2}+6 y x +2}{x^{2} \left (2 y x +3\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

73.062

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

78.251

1679

\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \]

[_Riccati]

17.788

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

4.523

1681

\[ {}3 \cos \left (x \right ) y+4 x \,{\mathrm e}^{x}+2 x^{3} y+\left (3 \sin \left (x \right )+3\right ) y^{\prime } = 0 \]

[_linear]

137.859

1682

\[ {}14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1.134

1683

\[ {}2 x -2 y^{2}+\left (12 y^{2}-4 y x \right ) y^{\prime } = 0 \]

[_exact, _rational]

41.998

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

0.367

1685

\[ {}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

60.210

1686

\[ {}-2 y^{2} \sin \left (x \right )+3 y^{3}-2 x +\left (4 \cos \left (x \right ) y+9 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

118.671

1687

\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

107.372

1688

\[ {}3 x^{2}+2 y x +4 y^{2}+\left (x^{2}+8 y x +18 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

40.589

1689

\[ {}2 x^{2}+8 y x +y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \]

[_rational]

46.193

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

47.634

1691

\[ {}y \sin \left (y x \right )+x y^{2} \cos \left (y x \right )+\left (x \sin \left (y x \right )+x y^{2} \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

49.529

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

23.594

1693

\[ {}{\mathrm e}^{x} \left (x^{2} y^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

96.549

1694

\[ {}x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

75.148

1695

\[ {}{\mathrm e}^{y x} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{y x}+3 x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.820

1696

\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

14.731

1697

\[ {}4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.393

1698

\[ {}-4 \cos \left (x \right ) y+4 \sin \left (x \right ) \cos \left (x \right )+\sec \left (x \right )^{2}+\left (4 y-4 \sin \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

8.041

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left ({\mathrm e}^{x}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.610

1700

\[ {}\sin \left (x \right )-\sin \left (x \right ) y-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime } = 0 \]
i.c.

[_linear]

2.247