2.2.11 Problems 1001 to 1100

Table 2.35: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

1001

\begin{align*} x_{1}^{\prime }&=47 x_{1}-8 x_{2}+5 x_{3}-5 x_{4} \\ x_{2}^{\prime }&=-10 x_{1}+32 x_{2}+18 x_{3}-2 x_{4} \\ x_{3}^{\prime }&=139 x_{1}-40 x_{2}-167 x_{3}-121 x_{4} \\ x_{4}^{\prime }&=-232 x_{1}+64 x_{2}+360 x_{3}+248 x_{4} \\ \end{align*}

system_of_ODEs

2.754

1002

\begin{align*} x_{1}^{\prime }&=139 x_{1}-14 x_{2}-52 x_{3}-14 x_{4}+28 x_{5} \\ x_{2}^{\prime }&=-22 x_{1}+5 x_{2}+7 x_{3}+8 x_{4}-7 x_{5} \\ x_{3}^{\prime }&=370 x_{1}-38 x_{2}-139 x_{3}-38 x_{4}+76 x_{5} \\ x_{4}^{\prime }&=152 x_{1}-16 x_{2}-59 x_{3}-13 x_{4}+35 x_{5} \\ x_{5}^{\prime }&=95 x_{1}-10 x_{2}-38 x_{3}-7 x_{4}+23 x_{5} \\ \end{align*}

system_of_ODEs

4.658

1003

\begin{align*} x_{1}^{\prime }&=9 x_{1}+13 x_{2}-13 x_{6} \\ x_{2}^{\prime }&=-14 x_{1}+19 x_{2}-10 x_{3}-20 x_{4}+10 x_{5}+4 x_{6} \\ x_{3}^{\prime }&=-30 x_{1}+12 x_{2}-7 x_{3}-30 x_{4}+12 x_{5}+18 x_{6} \\ x_{4}^{\prime }&=-12 x_{1}+10 x_{2}-10 x_{3}-9 x_{4}+10 x_{5}+2 x_{6} \\ x_{5}^{\prime }&=6 x_{1}+9 x_{2}+6 x_{4}+5 x_{5}-15 x_{6} \\ x_{6}^{\prime }&=-14 x_{1}+23 x_{2}-10 x_{3}-20 x_{4}+10 x_{5} \\ \end{align*}

system_of_ODEs

3.969

1004

\begin{align*} x_{1}^{\prime }&=9 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-x_{2} \\ x_{3}^{\prime }&=6 x_{1}+4 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.474

1005

\begin{align*} x_{1}^{\prime }&=x_{1}-3 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+7 x_{2} \\ \end{align*}

system_of_ODEs

0.280

1006

\begin{align*} x_{1}^{\prime }&=x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-5 x_{1}-3 x_{2}-7 x_{3} \\ x_{3}^{\prime }&=x_{1} \\ \end{align*}

system_of_ODEs

0.475

1007

\begin{align*} x_{1}^{\prime }&=x_{3} \\ x_{2}^{\prime }&=x_{4} \\ x_{3}^{\prime }&=-2 x_{1}+2 x_{2}-3 x_{3}+x_{4} \\ x_{4}^{\prime }&=2 x_{1}-2 x_{2}+x_{3}-3 x_{4} \\ \end{align*}

system_of_ODEs

0.743

1008

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2} \\ x_{2}^{\prime }&=-x_{1}-4 x_{2} \\ \end{align*}

system_of_ODEs

0.269

1009

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.254

1010

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+5 x_{2} \\ \end{align*}

system_of_ODEs

0.273

1011

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=x_{1}+5 x_{2} \\ \end{align*}

system_of_ODEs

0.257

1012

\begin{align*} x_{1}^{\prime }&=7 x_{1}+x_{2} \\ x_{2}^{\prime }&=-4 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.283

1013

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+9 x_{2} \\ \end{align*}

system_of_ODEs

0.273

1014

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=-7 x_{1}+9 x_{2}+7 x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ \end{align*}

system_of_ODEs

0.392

1015

\begin{align*} x_{1}^{\prime }&=25 x_{1}+12 x_{2} \\ x_{2}^{\prime }&=-18 x_{1}-5 x_{2} \\ x_{3}^{\prime }&=6 x_{1}+6 x_{2}+13 x_{3} \\ \end{align*}

system_of_ODEs

0.503

1016

\begin{align*} x_{1}^{\prime }&=-19 x_{1}+12 x_{2}+84 x_{3} \\ x_{2}^{\prime }&=5 x_{2} \\ x_{3}^{\prime }&=-8 x_{1}+4 x_{2}+33 x_{3} \\ \end{align*}

system_of_ODEs

0.492

1017

\begin{align*} x_{1}^{\prime }&=-13 x_{1}+40 x_{2}-48 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+23 x_{2}-24 x_{3} \\ x_{3}^{\prime }&=3 x_{3} \\ \end{align*}

system_of_ODEs

0.492

1018

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-4 x_{3} \\ x_{2}^{\prime }&=-x_{1}-x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{3} \\ \end{align*}

system_of_ODEs

0.415

1019

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{3} \\ x_{2}^{\prime }&=-x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.401

1020

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{3} \\ x_{2}^{\prime }&=x_{2}-4 x_{3} \\ x_{3}^{\prime }&=x_{2}-3 x_{3} \\ \end{align*}

system_of_ODEs

0.392

1021

\begin{align*} x_{1}^{\prime }&=x_{3} \\ x_{2}^{\prime }&=-5 x_{1}-x_{2}-5 x_{3} \\ x_{3}^{\prime }&=4 x_{1}+x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.458

1022

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=x_{1}+4 x_{2} \\ x_{3}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.494

1023

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=-2 x_{1}-2 x_{2}-3 x_{3} \\ x_{3}^{\prime }&=2 x_{1}+3 x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.447

1024

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=18 x_{1}+7 x_{2}+4 x_{3} \\ x_{3}^{\prime }&=-27 x_{1}-9 x_{2}-5 x_{3} \\ \end{align*}

system_of_ODEs

0.470

1025

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\ x_{3}^{\prime }&=-2 x_{1}-4 x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

0.438

1026

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\ x_{2}^{\prime }&=x_{2} \\ x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\ x_{4}^{\prime }&=-4 x_{2}-x_{4} \\ \end{align*}

system_of_ODEs

0.613

1027

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+x_{4} \\ x_{2}^{\prime }&=2 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{3}+x_{4} \\ x_{4}^{\prime }&=2 x_{4} \\ \end{align*}

system_of_ODEs

0.569

1028

\begin{align*} x_{1}^{\prime }&=-x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ x_{3}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\ x_{4}^{\prime }&=x_{2}+x_{4} \\ \end{align*}

system_of_ODEs

0.488

1029

\begin{align*} x_{1}^{\prime }&=x_{1}+3 x_{2}+7 x_{3} \\ x_{2}^{\prime }&=-x_{2}-4 x_{3} \\ x_{3}^{\prime }&=x_{2}+3 x_{3} \\ x_{4}^{\prime }&=-6 x_{2}-14 x_{3}+x_{4} \\ \end{align*}

system_of_ODEs

0.518

1030

\begin{align*} x_{1}^{\prime }&=39 x_{1}+8 x_{2}-16 x_{3} \\ x_{2}^{\prime }&=-36 x_{1}-5 x_{2}+16 x_{3} \\ x_{3}^{\prime }&=72 x_{1}+16 x_{2}-29 x_{3} \\ \end{align*}

system_of_ODEs

0.557

1031

\begin{align*} x_{1}^{\prime }&=28 x_{1}+50 x_{2}+100 x_{3} \\ x_{2}^{\prime }&=15 x_{1}+33 x_{2}+60 x_{3} \\ x_{3}^{\prime }&=-15 x_{1}-30 x_{2}-57 x_{3} \\ \end{align*}

system_of_ODEs

0.557

1032

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+17 x_{2}+4 x_{3} \\ x_{2}^{\prime }&=-x_{1}+6 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

0.455

1033

\begin{align*} x_{1}^{\prime }&=5 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ x_{3}^{\prime }&=-3 x_{1}+2 x_{2}+x_{3} \\ \end{align*}

system_of_ODEs

0.459

1034

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+5 x_{2}-5 x_{3} \\ x_{2}^{\prime }&=3 x_{1}-x_{2}+3 x_{3} \\ x_{3}^{\prime }&=8 x_{1}-8 x_{2}+10 x_{3} \\ \end{align*}

system_of_ODEs

0.474

1035

\begin{align*} x_{1}^{\prime }&=-15 x_{1}-7 x_{2}+4 x_{3} \\ x_{2}^{\prime }&=34 x_{1}+16 x_{2}-11 x_{3} \\ x_{3}^{\prime }&=17 x_{1}+7 x_{2}+5 x_{3} \\ \end{align*}

system_of_ODEs

0.520

1036

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{2}+x_{3}-2 x_{4} \\ x_{2}^{\prime }&=7 x_{1}-4 x_{2}-6 x_{3}+11 x_{4} \\ x_{3}^{\prime }&=5 x_{1}-x_{2}+x_{3}+3 x_{4} \\ x_{4}^{\prime }&=6 x_{1}-2 x_{2}-2 x_{3}+6 x_{4} \\ \end{align*}

system_of_ODEs

0.953

1037

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}-2 x_{3}+x_{4} \\ x_{2}^{\prime }&=3 x_{2}-5 x_{3}+3 x_{4} \\ x_{3}^{\prime }&=-13 x_{2}+22 x_{3}-12 x_{4} \\ x_{4}^{\prime }&=-27 x_{2}+45 x_{3}-25 x_{4} \\ \end{align*}

system_of_ODEs

0.884

1038

\begin{align*} x_{1}^{\prime }&=35 x_{1}-12 x_{2}+4 x_{3}+30 x_{4} \\ x_{2}^{\prime }&=22 x_{1}-8 x_{2}+3 x_{3}+19 x_{4} \\ x_{3}^{\prime }&=-10 x_{1}+3 x_{2}-9 x_{4} \\ x_{4}^{\prime }&=-27 x_{1}+9 x_{2}-3 x_{3}-23 x_{4} \\ \end{align*}

system_of_ODEs

0.740

1039

\begin{align*} x_{1}^{\prime }&=11 x_{1}-x_{2}+26 x_{3}+6 x_{4}-3 x_{5} \\ x_{2}^{\prime }&=3 x_{2} \\ x_{3}^{\prime }&=-9 x_{1}-24 x_{3}-6 x_{4}+3 x_{5} \\ x_{4}^{\prime }&=3 x_{1}+9 x_{3}+5 x_{4}-x_{5} \\ x_{5}^{\prime }&=-48 x_{1}-3 x_{2}-138 x_{3}-30 x_{4}+18 x_{5} \\ \end{align*}

system_of_ODEs

1.465

1040

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2}+x_{3} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2}+x_{4} \\ x_{3}^{\prime }&=3 x_{3}-4 x_{4} \\ x_{4}^{\prime }&=4 x_{3}+3 x_{4} \\ \end{align*}

system_of_ODEs

0.645

1041

\begin{align*} x_{1}^{\prime }&=2 x_{1}-8 x_{3}-3 x_{4} \\ x_{2}^{\prime }&=-18 x_{1}-x_{2} \\ x_{3}^{\prime }&=-9 x_{1}-3 x_{2}-25 x_{3}-9 x_{4} \\ x_{4}^{\prime }&=33 x_{1}+10 x_{2}+90 x_{3}+32 x_{4} \\ \end{align*}

system_of_ODEs

1.526

1042

\begin{align*} y^{\prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.175

1043

\begin{align*} y^{\prime }&=4 y \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.197

1044

\begin{align*} 2 y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.194

1045

\begin{align*} y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.210

1046

\begin{align*} y^{\prime }&=x^{2} y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.187

1047

\begin{align*} \left (x -2\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.214

1048

\begin{align*} \left (2 x -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.215

1049

\begin{align*} 2 \left (x +1\right ) y^{\prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.220

1050

\begin{align*} \left (x -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.214

1051

\begin{align*} 2 \left (x -1\right ) y^{\prime }&=3 y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.207

1052

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.202

1053

\begin{align*} y^{\prime \prime }&=4 y \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.204

1054

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.225

1055

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.230

1056

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.143

1057

\begin{align*} 2 y^{\prime } x&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.148

1058

\begin{align*} x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.046

1059

\begin{align*} x^{3} y^{\prime }&=2 y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.054

1060

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.246

1061

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.210

1062

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.251

1063

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.256

1064

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.051

1065

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

6.791

1066

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.308

1067

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.298

1068

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.258

1069

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.331

1070

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.254

1071

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.238

1072

\begin{align*} \left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.303

1073

\begin{align*} \left (-x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +16 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.301

1074

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.309

1075

\begin{align*} 3 y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.278

1076

\begin{align*} 5 y^{\prime \prime }-2 y^{\prime } x +10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.277

1077

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.259

1078

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.286

1079

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.192

1080

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.194

1081

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.267

1082

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.234

1083

\begin{align*} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.296

1084

\begin{align*} \left (-x^{2}+2 x \right ) y^{\prime \prime }-6 \left (x -1\right ) y^{\prime }-4 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.352

1085

\begin{align*} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\ y \left (3\right ) &= 2 \\ y^{\prime }\left (3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _with_linear_symmetries]]

0.275

1086

\begin{align*} \left (4 x^{2}+16 x +17\right ) y^{\prime \prime }&=8 y \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= 0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.310

1087

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\ y \left (-3\right ) &= 1 \\ y^{\prime }\left (-3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=-3\).

[[_2nd_order, _with_linear_symmetries]]

0.333

1088

\begin{align*} y^{\prime \prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.264

1089

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.344

1090

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.274

1091

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.286

1092

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}+1\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.298

1093

\begin{align*} y^{\prime \prime }+{\mathrm e}^{-x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.400

1094

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.483

1095

\begin{align*} y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

1.177

1096

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.319

1097

\begin{align*} y^{\prime \prime }&=y x \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.194

1098

\begin{align*} 3 y+y^{\prime }&={\mathrm e}^{-2 t}+t \\ \end{align*}

[[_linear, ‘class A‘]]

2.967

1099

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

3.161

1100

\begin{align*} y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

3.355