2.2.173 Problems 17201 to 17300

Table 2.347: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17201

\[ {}y^{\prime \prime }+x y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.448

17202

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.659

17203

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.906

17204

\[ {}\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

35.466

17205

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c.

[NONE]

0.051

17206

\[ {}y^{\prime }-2 x y = 0 \]
i.c.

[_separable]

0.625

17207

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.478

17208

\[ {}y^{\prime \prime }-y^{\prime } x +y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.476

17209

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.481

17210

\[ {}y^{\prime \prime } = x^{2} y-y^{\prime } \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.552

17211

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.665

17212

\[ {}y^{\prime } = {\mathrm e}^{y}+x y \]
i.c.

[‘y=_G(x,y’)‘]

0.428

17213

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.792

17214

\[ {}\left (x +1\right ) y^{\prime }-n y = 0 \]

[_separable]

0.541

17215

\[ {}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[_Jacobi]

0.823

17216

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.912

17217

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.650

17218

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.857

17219

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.862

17220

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.994

17221

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.221

17222

\[ {}y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

[_Lienard]

0.902

17223

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.892

17224

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.033

17225

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.419

17226

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.625

17227

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.125

17228

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.151

17229

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 t x_{1}^{2} \\ x_{2}^{\prime }=\frac {x_{2}+t}{t} \end {array}\right ] \]

system_of_ODEs

0.054

17230

\[ {}\left [\begin {array}{c} x_{1}^{\prime }={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }=2 \,{\mathrm e}^{x_{1}} \end {array}\right ] \]

system_of_ODEs

0.056

17231

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.061

17232

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }=x_{2}-x_{1} \end {array}\right ] \]

system_of_ODEs

0.056

17233

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }=\frac {x \,{\mathrm e}^{-y}}{t} \end {array}\right ] \]

system_of_ODEs

0.057

17234

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y+t}{x+y} \\ y^{\prime }=\frac {x-t}{x+y} \end {array}\right ] \]

system_of_ODEs

0.059

17235

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {t -y}{y-x} \\ y^{\prime }=\frac {x-t}{y-x} \end {array}\right ] \]

system_of_ODEs

0.058

17236

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y+t}{x+y} \\ y^{\prime }=\frac {t +x}{x+y} \end {array}\right ] \]

system_of_ODEs

0.058

17237

\[ {}\left [\begin {array}{c} x^{\prime }=-9 y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.441

17238

\[ {}\left [\begin {array}{c} x^{\prime }=y+t \\ y^{\prime }=x-t \end {array}\right ] \]

system_of_ODEs

0.363

17239

\[ {}\left [\begin {array}{c} x^{\prime }+3 x+4 y=0 \\ y^{\prime }+2 x+5 y=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.504

17240

\[ {}\left [\begin {array}{c} x^{\prime }=x+5 y \\ y^{\prime }=-x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.531

17241

\[ {}\left [\begin {array}{c} 4 x^{\prime }-y^{\prime }+3 x=\sin \left (t \right ) \\ x^{\prime }+y=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.579

17242

\[ {}\left [\begin {array}{c} x^{\prime }=z-y \\ y^{\prime }=z \\ z^{\prime }=z-x \end {array}\right ] \]

system_of_ODEs

0.557

17243

\[ {}\left [\begin {array}{c} x^{\prime }=y+z \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.323

17244

\[ {}\left [\begin {array}{c} x^{\prime \prime }=y \\ y^{\prime \prime }=x \end {array}\right ] \]

system_of_ODEs

0.028

17245

\[ {}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime }+x=0 \\ x^{\prime }+y^{\prime \prime }=0 \end {array}\right ] \]

system_of_ODEs

0.027

17246

\[ {}\left [\begin {array}{c} x^{\prime \prime }=3 x+y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.052

17247

\[ {}\left [\begin {array}{c} x^{\prime \prime }=x^{2}+y \\ y^{\prime }=-2 x x^{\prime }+x \end {array}\right ] \]
i.c.

system_of_ODEs

0.044

17248

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2} \\ y^{\prime }=2 x y \end {array}\right ] \]

system_of_ODEs

0.055

17249

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {1}{y} \\ y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

0.056

17250

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x}{y} \\ y^{\prime }=\frac {y}{x} \end {array}\right ] \]

system_of_ODEs

0.053

17251

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{x-y} \\ y^{\prime }=\frac {x}{x-y} \end {array}\right ] \]

system_of_ODEs

0.057

17252

\[ {}\left [\begin {array}{c} x^{\prime }=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }=\cos \left (x\right ) \sin \left (y\right ) \end {array}\right ] \]

system_of_ODEs

0.065

17253

\[ {}\left [\begin {array}{c} {\mathrm e}^{t} x^{\prime }=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

0.063

17254

\[ {}\left [\begin {array}{c} x^{\prime }=\cos \left (x\right )^{2} \cos \left (y\right )^{2}+\sin \left (x\right )^{2} \cos \left (y\right )^{2} \\ y^{\prime }=-\frac {\sin \left (2 x\right ) \sin \left (2 y\right )}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.061

17255

\[ {}\left [\begin {array}{c} x^{\prime }=8 y-x \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.405

17256

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.369

17257

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.662

17258

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.498

17259

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y \\ y^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.519

17260

\[ {}\left [\begin {array}{c} x^{\prime }=y+z-x \\ y^{\prime }=x-y+z \\ z^{\prime }=x+y-z \end {array}\right ] \]

system_of_ODEs

0.339

17261

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+2 y-z \\ z^{\prime }=x-y+2 z \end {array}\right ] \]

system_of_ODEs

0.428

17262

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y+z \\ y^{\prime }=x+z \\ z^{\prime }=y-2 z-3 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.439

17263

\[ {}\left [\begin {array}{c} x^{\prime }+2 x-y=-{\mathrm e}^{2 t} \\ y^{\prime }+3 x-2 y=6 \,{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.471

17264

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-\cos \left (t \right ) \\ y^{\prime }=-y-2 x+\cos \left (t \right )+\sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.806

17265

\[ {}\left [\begin {array}{c} x^{\prime }=y+\tan \left (t \right )^{2}-1 \\ y^{\prime }=\tan \left (t \right )-x \end {array}\right ] \]

system_of_ODEs

0.681

17266

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

0.065

17267

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\frac {1}{\cos \left (t \right )} \end {array}\right ] \]

system_of_ODEs

0.599

17268

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+1 \end {array}\right ] \]

system_of_ODEs

0.599

17269

\[ {}\left [\begin {array}{c} x^{\prime }=3-2 y \\ y^{\prime }=2 x-2 t \end {array}\right ] \]

system_of_ODEs

0.535

17270

\[ {}\left [\begin {array}{c} x^{\prime }=-y+\sin \left (t \right ) \\ y^{\prime }=x+\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.534

17271

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{t} \\ y^{\prime }=x+y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.352

17272

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y+4 t -1 \\ y^{\prime }=x-2 y+t \end {array}\right ] \]
i.c.

system_of_ODEs

0.553

17273

\[ {}\left [\begin {array}{c} x^{\prime }=y-x+{\mathrm e}^{t} \\ y^{\prime }=x-y+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.516

17274

\[ {}\left [\begin {array}{c} x^{\prime }+y=t^{2} \\ -x+y^{\prime }=t \end {array}\right ] \]

system_of_ODEs

0.529

17275

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+y={\mathrm e}^{-t} \\ 2 x^{\prime }+y^{\prime }+2 y=\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.456

17276

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-2 z+2-t \\ y^{\prime }=-x+1 \\ z^{\prime }=x+y-z+1-t \end {array}\right ] \]

system_of_ODEs

1.028

17277

\[ {}\left [\begin {array}{c} x^{\prime }+x+2 y=2 \,{\mathrm e}^{-t} \\ y^{\prime }+y+z=1 \\ z^{\prime }+z=1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.540

17278

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=x+2 y \end {array}\right ] \]

system_of_ODEs

0.410

17279

\[ {}\left [\begin {array}{c} x^{\prime }=6 x+y \\ y^{\prime }=4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.415

17280

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-4 y+1 \\ y^{\prime }=-x+5 y \end {array}\right ] \]

system_of_ODEs

0.604

17281

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y+{\mathrm e}^{t} \\ y^{\prime }=x+3 y-{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.437

17282

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y+\cos \left (t \right ) \\ y^{\prime }=-x-2 y+\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.452

17283

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

0.395

17284

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

0.396

17285

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.436

17286

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

0.397

17287

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.438

17288

\[ {}x^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

0.164

17289

\[ {}x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _quadrature]]

0.184

17290

\[ {}x^{\prime \prime } = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

0.253

17291

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.176

17292

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.206

17293

\[ {}x^{\prime \prime }-x^{\prime } = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.207

17294

\[ {}x^{\prime \prime }+x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.198

17295

\[ {}x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

0.210

17296

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.189

17297

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]
i.c.

[[_2nd_order, _missing_x]]

0.237

17298

\[ {}2 x^{\prime \prime }-2 x^{\prime } = \left (1+t \right ) {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _missing_y]]

0.235

17299

\[ {}x^{\prime \prime }+x = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.306

17300

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

2.095