2.3.9 first order ode bernoulli

Table 2.349: first order ode bernoulli

#

ODE

CAS classification

Solved?

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

61

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

113

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

123

\[ {}2 y x +x^{2} y^{\prime } = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

126

\[ {}2 y x +x^{2} y^{\prime } = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

127

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

128

\[ {}2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x} = 2 y x \]

[_Bernoulli]

129

\[ {}y^{2} \left (y+y^{\prime } x \right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

160

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) y^{n} \]

[_Bernoulli]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

186

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

187

\[ {}y^{\prime } x +2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

189

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

200

\[ {}y^{\prime } x = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

205

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

210

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

730

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

737

\[ {}x^{2} y^{\prime } = y x +y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

747

\[ {}2 y x +x^{2} y^{\prime } = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

750

\[ {}2 y x +x^{2} y^{\prime } = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

751

\[ {}y^{\prime } x +6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

752

\[ {}2 y^{\prime } x +y^{3} {\mathrm e}^{-2 x} = 2 y x \]

[_Bernoulli]

753

\[ {}y^{2} \left (y+y^{\prime } x \right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}y x +y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

778

\[ {}2 y x +x^{2} y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

779

\[ {}y^{\prime } x +2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

781

\[ {}x^{2} y^{\prime } = y x +3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

792

\[ {}y^{\prime } x = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

797

\[ {}3 y+x^{3} y^{4}+3 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

802

\[ {}y^{\prime } = x y^{3}-y x \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1137

\[ {}y^{\prime } = \left (1-2 x \right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {1-2 x}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]

[_separable]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 y x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1179

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1180

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1204

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1580

\[ {}y^{\prime } x +y^{2}+y = 0 \]

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1597

\[ {}y y^{\prime }+x = 0 \]
i.c.

[_separable]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1625

\[ {}y^{\prime }-y = x y^{2} \]

[_Bernoulli]

1629

\[ {}y^{\prime }+y = y^{2} \]

[_quadrature]

1630

\[ {}7 y^{\prime } x -2 y = -\frac {x^{2}}{y^{6}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1631

\[ {}x^{2} y^{\prime }+2 y = 2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \]

[_Bernoulli]

1632

\[ {}y^{\prime } \left (x^{2}+1\right )+2 y x = \frac {1}{\left (x^{2}+1\right ) y} \]

[_rational, _Bernoulli]

1633

\[ {}y^{\prime }-y x = x^{3} y^{3} \]

[_Bernoulli]

1634

\[ {}y^{\prime }-\frac {\left (x +1\right ) y}{3 x} = y^{4} \]

[_rational, _Bernoulli]

1635

\[ {}y^{\prime }-2 y = x y^{3} \]
i.c.

[_Bernoulli]

1637

\[ {}y+y^{\prime } x = x^{4} y^{4} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1639

\[ {}y^{\prime }-4 y = \frac {48 x}{y^{2}} \]
i.c.

[_rational, _Bernoulli]

1640

\[ {}2 y x +x^{2} y^{\prime } = y^{3} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1641

\[ {}y^{\prime }-y = x \sqrt {y} \]
i.c.

[_Bernoulli]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1649

\[ {}y^{\prime } = \frac {y x +y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1703

\[ {}{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

[_exact, _Bernoulli]

1707

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1736

\[ {}3 x^{2} y^{2}+2 y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2358

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2533

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2541

\[ {}y^{\prime } = {\mathrm e}^{t} y^{2}-2 y \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2542

\[ {}y^{\prime } = t y^{3}-y \]
i.c.

[_Bernoulli]

2775

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2779

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2786

\[ {}y+y^{\prime } x = y^{2} \]

[_separable]

2793

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2811

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2818

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2873

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2874

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2876

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2881

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2884

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2885

\[ {}y \left (1-x^{4} y^{2}\right )+y^{\prime } x = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2915

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_Bernoulli]

2916

\[ {}y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

[_Bernoulli]

2919

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2920

\[ {}y^{\prime }-y x = \sqrt {y}\, x \,{\mathrm e}^{x^{2}} \]

[_Bernoulli]

2921

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2922

\[ {}x^{2} y^{\prime }+y^{2} = y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2924

\[ {}y^{\prime }-y x = \frac {x}{y} \]

[_separable]

2925

\[ {}y+y^{\prime } x = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2926

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2927

\[ {}y^{\prime } x +2 y = 3 x^{3} y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2928

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

2931

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right ) \]

[_Bernoulli]

2932

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{-t} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2948

\[ {}y-y^{\prime } x = 2 y^{\prime }+2 y^{2} \]

[_separable]

2955

\[ {}2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

2963

\[ {}2 y^{\prime } x -y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2964

\[ {}y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

2972

\[ {}y^{\prime } x -5 y-x \sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2974

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2977

\[ {}y^{\prime } x -2 y-2 x^{4} y^{3} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2980

\[ {}y+y^{\prime } x = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2981

\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2982

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2990

\[ {}2 y^{\prime } \left (x^{2}+1\right ) = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3227

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

3399

\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{y x} \]

[_rational, _Bernoulli]

3413

\[ {}y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3514

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]
i.c.

[_Bernoulli]

3590

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

3591

\[ {}y^{\prime }+\frac {\tan \left (x \right ) y}{2} = 2 y^{3} \sin \left (x \right ) \]

[_Bernoulli]

3592

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \]

[_Bernoulli]

3593

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]

[_Bernoulli]

3594

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3595

\[ {}2 x \left (y^{\prime }+y^{3} x^{2}\right )+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3596

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (b -a \right ) y \]

[_rational, _Bernoulli]

3597

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \]

[_Bernoulli]

3598

\[ {}y^{\prime }+4 y x = 4 x^{3} \sqrt {y} \]

[_Bernoulli]

3599

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]

[_Bernoulli]

3600

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3601

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

3602

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3603

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]
i.c.

[_rational, _Bernoulli]

3604

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \]
i.c.

[_Bernoulli]

3913

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3974

\[ {}y^{\prime } x = 2 y \left (-1+y\right ) \]
i.c.

[_separable]

3983

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3984

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3985

\[ {}x^{2} y^{\prime }-2 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4048

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4085

\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \]

[_rational, _Bernoulli]

4118

\[ {}3 y^{\prime } x -3 x y^{4} \ln \left (x \right )-y = 0 \]

[_Bernoulli]

4120

\[ {}y \left (6 y^{2}-x -1\right )+2 y^{\prime } x = 0 \]

[_rational, _Bernoulli]

4121

\[ {}\left (x +1\right ) \left (y^{\prime }+y^{2}\right )-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4122

\[ {}x y y^{\prime }+y^{2}-\sin \left (x \right ) = 0 \]

[_Bernoulli]

4123

\[ {}2 x^{3}-y^{4}+x y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4124

\[ {}y^{\prime }-\tan \left (x \right ) y+y^{2} \cos \left (x \right ) = 0 \]

[_Bernoulli]

4139

\[ {}x y^{2} \left (y+y^{\prime } x \right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4143

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

4231

\[ {}y^{\prime } = x y \left (3+y\right ) \]

[_separable]

4238

\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \]

[_Bernoulli]

4251

\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[_Bernoulli]

4253

\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \]

[_Bernoulli]

4254

\[ {}y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4258

\[ {}y^{\prime } = f \left (x \right ) y+g \left (x \right ) y^{k} \]

[_Bernoulli]

4264

\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \]

[_Bernoulli]

4332

\[ {}y^{\prime } x +\left (1-y x \right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4333

\[ {}y^{\prime } x = \left (1-y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4334

\[ {}y^{\prime } x = \left (1+y x \right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4335

\[ {}y^{\prime } x = a \,x^{3} \left (1-y x \right ) y \]

[_Bernoulli]

4337

\[ {}y^{\prime } x = y \left (1+2 y x \right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4342

\[ {}y^{\prime } x +\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4345

\[ {}y^{\prime } x +\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4347

\[ {}y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4348

\[ {}y^{\prime } x +y \left (1-x y^{2}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4349

\[ {}y+y^{\prime } x = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4350

\[ {}y^{\prime } x = a y+b \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4351

\[ {}y^{\prime } x +2 y = a \,x^{2 k} y^{k} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4352

\[ {}y^{\prime } x = 4 y-4 \sqrt {y} \]

[_separable]

4384

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

4385

\[ {}\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4386

\[ {}\left (x +1\right ) y^{\prime } = \left (1-x y^{3}\right ) y \]

[_rational, _Bernoulli]

4394

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4395

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

[_rational, _Bernoulli]

4398

\[ {}2 y^{\prime } x = y \left (1+y^{2}\right ) \]

[_separable]

4399

\[ {}2 y^{\prime } x +y \left (1+y^{2}\right ) = 0 \]

[_separable]

4400

\[ {}2 y^{\prime } x = \left (1+x -6 y^{2}\right ) y \]

[_rational, _Bernoulli]

4405

\[ {}2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4407

\[ {}3 y^{\prime } x = \left (2+x y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4408

\[ {}3 y^{\prime } x = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

[_Bernoulli]

4420

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4421

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4430

\[ {}x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4431

\[ {}x^{2} y^{\prime } = 2 y \left (x -y^{2}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4434

\[ {}x^{2} y^{\prime } = \left (a x +b y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4435

\[ {}x^{2} y^{\prime }+y x +\sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4459

\[ {}y^{\prime } \left (x^{2}+1\right )+x y \left (1-y\right ) = 0 \]

[_separable]

4460

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4464

\[ {}\left (-x^{2}+4\right ) y^{\prime }+4 y = \left (x +2\right ) y^{2} \]

[_rational, _Bernoulli]

4467

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+\left (x -y\right ) y = 0 \]

[_rational, _Bernoulli]

4469

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+y x +b x y^{2} = 0 \]

[_separable]

4479

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4506

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4511

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4524

\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4525

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4526

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+a y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4527

\[ {}6 x^{3} y^{\prime } = 4 x^{2} y+\left (1-3 x \right ) y^{4} \]

[_rational, _Bernoulli]

4529

\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4535

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime } = \left (x -3 x^{3} y\right ) y \]

[_rational, _Bernoulli]

4568

\[ {}y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right ) = y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \]

[_Bernoulli]

4581

\[ {}y y^{\prime }+4 \left (x +1\right ) x +y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4582

\[ {}y y^{\prime } = a x +b y^{2} \]

[_rational, _Bernoulli]

4583

\[ {}y y^{\prime } = b \cos \left (x +c \right )+a y^{2} \]

[_Bernoulli]

4585

\[ {}y y^{\prime } = a x +b x y^{2} \]

[_separable]

4586

\[ {}y y^{\prime } = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \]

[_Bernoulli]

4618

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4619

\[ {}2 y y^{\prime } = x y^{2}+x^{3} \]

[_rational, _Bernoulli]

4661

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

4662

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4663

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4664

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4665

\[ {}x y y^{\prime } = a \,x^{3} \cos \left (x \right )+y^{2} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

4668

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

4669

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4670

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

4695

\[ {}2 x y y^{\prime }+1-2 x^{3}-y^{2} = 0 \]

[_rational, _Bernoulli]

4696

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

4697

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4698

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

4699

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4700

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

4701

\[ {}2 x y y^{\prime }+x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

[_rational, _Bernoulli]

4709

\[ {}2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

[_exact, _rational, _Bernoulli]

4714

\[ {}a x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4715

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4727

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

4728

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

[_rational, _Bernoulli]

4729

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4734

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

4735

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4738

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4742

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4743

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4777

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

[_rational, _Bernoulli]

4804

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4809

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5139

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (x^{2}+y^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5253

\[ {}y^{\prime }+y x = x^{3} y^{3} \]

[_Bernoulli]

5255

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5261

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5277

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5278

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

5279

\[ {}z^{\prime }+2 x z = 2 a \,x^{3} z^{3} \]

[_Bernoulli]

5280

\[ {}z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

5281

\[ {}y+y^{\prime } x = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5341

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5344

\[ {}y x -y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5401

\[ {}y+y^{\prime } x = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5405

\[ {}y^{\prime }+y = x y^{3} \]

[_Bernoulli]

5406

\[ {}\left (-x^{3}+1\right ) y^{\prime }-2 \left (x +1\right ) y = y^{{5}/{2}} \]

[_rational, _Bernoulli]

5415

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5416

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

5417

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5419

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

5420

\[ {}2 \cos \left (x \right ) y^{\prime } = y \sin \left (x \right )-y^{3} \]
i.c.

[_Bernoulli]

5426

\[ {}2 x y y^{\prime }+\left (x +1\right ) y^{2} = {\mathrm e}^{x} \]

[_Bernoulli]

5436

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5439

\[ {}y+y^{\prime } x = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5443

\[ {}y^{\prime }+8 x^{3} y^{3}+2 y x = 0 \]

[_Bernoulli]

5451

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5459

\[ {}\left (x^{2}-1\right ) y^{\prime }+y x -3 x y^{2} = 0 \]

[_separable]

5466

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5467

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5471

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5594

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

5656

\[ {}x y y^{\prime }+1+y^{2} = 0 \]
i.c.

[_separable]

5658

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

5659

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

5679

\[ {}y^{\prime }+y = x y^{{2}/{3}} \]

[_Bernoulli]

5680

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5681

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

5685

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5774

\[ {}3 x^{3} y^{2} y^{\prime }-y^{3} x^{2} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5776

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

5788

\[ {}y^{\prime }+y x = \frac {x}{y} \]

[_separable]

5826

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

5830

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

5878

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

5966

\[ {}y^{\prime }+y x = x y^{2} \]

[_separable]

5967

\[ {}3 y^{\prime } x +y+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5989

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5990

\[ {}y^{\prime } x +3 y = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5998

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6011

\[ {}y^{\prime }+y = x y^{3} \]

[_Bernoulli]

6012

\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6013

\[ {}2 y^{\prime }+y = y^{3} \left (x -1\right ) \]

[_Bernoulli]

6014

\[ {}y^{\prime }-2 \tan \left (x \right ) y = y^{2} \tan \left (x \right )^{2} \]

[_Bernoulli]

6015

\[ {}y^{\prime }+\tan \left (x \right ) y = y^{3} \sec \left (x \right )^{4} \]

[_Bernoulli]

6019

\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \]
i.c.

[_Bernoulli]

6029

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6036

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6037

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6039

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6133

\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6155

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6158

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6161

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6163

\[ {}y^{2}+y x -y^{\prime } x = 0 \]
i.c.

[_rational, _Bernoulli]

6176

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6177

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6178

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6206

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6209

\[ {}y^{\prime } x +y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6212

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

6214

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

6218

\[ {}2 x y^{5}-y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6224

\[ {}x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

6626

\[ {}y+y^{\prime } x = y^{2} \]
i.c.

[_separable]

6627

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

6628

\[ {}y^{\prime }-x y^{2} = 2 y x \]

[_separable]

6632

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

6655

\[ {}2 y^{\prime } x = y \left (2 x^{2}-y^{2}\right ) \]

[_rational, _Bernoulli]

6671

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6696

\[ {}2 y^{\prime } x +\left (x^{2} y^{4}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6745

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6747

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6786

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

6796

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6797

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7018

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7077

\[ {}y+y^{\prime } x = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7078

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

7079

\[ {}y+y^{\prime } x = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7080

\[ {}y^{\prime }+y x = x y^{4} \]

[_separable]

7107

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7108

\[ {}x^{2} y^{\prime }-3 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7115

\[ {}x^{2} y^{\prime } = y^{2}+2 y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7116

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7122

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7123

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7687

\[ {}x y \left (x^{2}+y^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7938

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7968

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (1-2 x \right ) y^{4}}{3} \]

[_Bernoulli]

7982

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

8034

\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]
i.c.

[_Bernoulli]

8125

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

8243

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

9265

\[ {}y^{\prime }-x y^{2}-3 y x = 0 \]

[_separable]

9270

\[ {}y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y = 0 \]

[_Bernoulli]

9280

\[ {}y^{\prime }+2 a \,x^{3} y^{3}+2 y x = 0 \]

[_Bernoulli]

9337

\[ {}y^{\prime } x +x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9344

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

9345

\[ {}y^{\prime } x -y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

9364

\[ {}\left (x +1\right ) y^{\prime }+\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

9367

\[ {}3 y^{\prime } x -3 x y^{4} \ln \left (x \right )-y = 0 \]

[_Bernoulli]

9372

\[ {}x^{2} y^{\prime }-y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9391

\[ {}\left (x^{2}-1\right ) y^{\prime }-\left (-x +y\right ) y = 0 \]

[_rational, _Bernoulli]

9393

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x = 0 \]

[_separable]

9395

\[ {}\left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y^{2}-4 y = 0 \]

[_rational, _Bernoulli]

9406

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9412

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9432

\[ {}\cos \left (x \right ) y^{\prime }-y^{4}-y \sin \left (x \right ) = 0 \]

[_Bernoulli]

9442

\[ {}y y^{\prime }+4 \left (x +1\right ) x +y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9443

\[ {}y y^{\prime }+a y^{2}-b \cos \left (x +c \right ) = 0 \]

[_Bernoulli]

9445

\[ {}y y^{\prime }+x y^{2}-4 x = 0 \]

[_separable]

9455

\[ {}2 y y^{\prime }-x y^{2}-x^{3} = 0 \]

[_rational, _Bernoulli]

9465

\[ {}a y y^{\prime }+b y^{2}+f \left (x \right ) = 0 \]

[_Bernoulli]

9467

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9468

\[ {}x y y^{\prime }-y^{2}+a \,x^{3} \cos \left (x \right ) = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

9475

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9476

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9477

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9493

\[ {}2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9494

\[ {}2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_Bernoulli]

9498

\[ {}2 x^{3}+y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[_rational, _Bernoulli]

9502

\[ {}y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1 = 0 \]

[_exact, _Bernoulli]

9503

\[ {}f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[_Bernoulli]

9533

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9535

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9549

\[ {}x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right ) = 0 \]

[_Bernoulli]

9738

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

9916

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (\left (x +1\right ) x \right ) y x^{4}-\ln \left (\left (x +1\right ) x \right ) x^{3}\right )}{x} \]

[_Bernoulli]

9936

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \]

[_Bernoulli]

9947

\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \]

[_Bernoulli]

9952

\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \]

[_Bernoulli]

9980

\[ {}y^{\prime } = -\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \]

[_Bernoulli]

9998

\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \]

[_Bernoulli]

9999

\[ {}y^{\prime } = \frac {y \left (-\ln \left (x \right )-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x^{2} y\right )}{x \ln \left (x \right )} \]

[_Bernoulli]

10009

\[ {}y^{\prime } = \frac {y \left (-\ln \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \ln \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10015

\[ {}y^{\prime } = \frac {y \left (-\tanh \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \tanh \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10016

\[ {}y^{\prime } = -\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \]

[_Bernoulli]

10021

\[ {}y^{\prime } = -\frac {y \left (\ln \left (x -1\right )+\coth \left (x +1\right ) x -\coth \left (x +1\right ) x^{2} y\right )}{x \ln \left (x -1\right )} \]

[_Bernoulli]

10025

\[ {}y^{\prime } = \frac {y \left (-\cosh \left (\frac {1}{x +1}\right ) x +\cosh \left (\frac {1}{x +1}\right )-x +x^{2} y-x^{2}+x^{3} y\right )}{x \left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )} \]

[_Bernoulli]

10030

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10032

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

11227

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \]

[_Bernoulli]

12026

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12031

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12032

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12033

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12046

\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y = y^{{5}/{2}} \]

[_rational, _Bernoulli]

12047

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

12049

\[ {}4 y^{\prime } x +3 y+{\mathrm e}^{x} x^{4} y^{5} = 0 \]

[_Bernoulli]

12054

\[ {}x^{2} y^{\prime }+y^{2}-y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12057

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12058

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12073

\[ {}y^{\prime } x +y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

[_Bernoulli]

12081

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x = a x y^{2} \]

[_separable]

12086

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12095

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

12103

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12248

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12249

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12256

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

12266

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12278

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

12279

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12282

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12284

\[ {}x^{\prime } = x \left (4+x\right ) \]
i.c.

[_quadrature]

12289

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12292

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12295

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12296

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12322

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12323

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

12324

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12325

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12326

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

12327

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

[_Bernoulli]

12331

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12332

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12472

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12473

\[ {}y+y^{\prime } x = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12492

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]
i.c.

[_separable]

12493

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

12509

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12510

\[ {}y^{2}+2 y x -x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12518

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

12528

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12529

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12550

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

12551

\[ {}y+y^{\prime } x = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12552

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

12553

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{x t} \]

[_separable]

12560

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12584

\[ {}x^{2} y^{\prime }+y x = x y^{3} \]

[_separable]

12587

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12588

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

12589

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

12591

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

12596

\[ {}x^{2} y^{\prime }+y x = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12877

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

12884

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12885

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

12891

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

12892

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

12907

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

12911

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13020

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x = 0 \]

[_separable]

13021

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13024

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

13030

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13039

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13041

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

13047

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13051

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13053

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13058

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13115

\[ {}y+y^{\prime } x = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13128

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13336

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

13344

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13362

\[ {}y^{\prime }+y x = x^{3} y^{3} \]

[_Bernoulli]

13363

\[ {}\left (-x^{2}+1\right ) y^{\prime }-y x +a x y^{2} = 0 \]

[_separable]

13364

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

13366

\[ {}y^{\prime } x = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

13367

\[ {}y-\cos \left (x \right ) y^{\prime } = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \]

[_Bernoulli]

13374

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13375

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13438

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13444

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13477

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

13498

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

13500

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

13525

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

13528

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

13537

\[ {}y^{\prime } = \frac {1}{y x} \]

[_separable]

13541

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

13542

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

13546

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13574

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

13575

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

13579

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

13580

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

13591

\[ {}x -y y^{\prime } = 0 \]

[_separable]

13594

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

13595

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

13604

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13605

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13606

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

13607

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13608

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13609

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13610

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13611

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13612

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13613

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

13614

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13615

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13616

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13617

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

13618

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13619

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13620

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13621

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13622

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

13764

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

13770

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

13771

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

13772

\[ {}y^{\prime } = \frac {t}{y+t^{2} y} \]

[_separable]

13773

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

13776

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

13786

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

13787

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

13788

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

13789

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

13791

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

13792

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

13793

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

13796

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13797

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

13801

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

13802

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

13804

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

13813

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

13814

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

13817

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

13837

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

13844

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

13845

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

13849

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13850

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13851

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13852

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

13881

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

13885

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

13941

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

13946

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

13950

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

13952

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

14145

\[ {}y y^{\prime } = 2 x \]

[_separable]

14191

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

14196

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14197

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14207

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14209

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14213

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14215

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

14219

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

14222

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14225

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14233

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14237

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14239

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

14241

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14242

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

14243

\[ {}y^{\prime } = \frac {-1+y^{2}}{y x} \]
i.c.

[_separable]

14253

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

14278

\[ {}x^{2} y^{\prime }-y x = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14279

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14282

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

14283

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14284

\[ {}y^{\prime }+3 y \cot \left (x \right ) = 6 \cos \left (x \right ) y^{{2}/{3}} \]

[_Bernoulli]

14285

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14286

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14288

\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14293

\[ {}y^{\prime }+\frac {y}{x} = y^{3} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14297

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14302

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14303

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14305

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14306

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14307

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14312

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14322

\[ {}y^{\prime } x = 2 y^{2}-6 y \]

[_separable]

14323

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14329

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14330

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14332

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14333

\[ {}3 x y^{3}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14338

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

14342

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14353

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14354

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14357

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

14360

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14363

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

14964

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

14995

\[ {}y^{\prime } = \frac {y^{2}+2 y x}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15026

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15027

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15030

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15052

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15053

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15054

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15055

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15056

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15057

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15058

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15059

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15085

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15092

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15094

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15095

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15100

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15113

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15114

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15123

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15124

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15187

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15190

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15196

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

15204

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15230

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15233

\[ {}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15240

\[ {}y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

[_rational, _Bernoulli]

15241

\[ {}y^{\prime }+y = t y^{2} \]

[_Bernoulli]

15242

\[ {}2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

[_Bernoulli]

15243

\[ {}t y^{\prime }-y = t y^{3} \sin \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15244

\[ {}y^{\prime }-2 y = \frac {\cos \left (t \right )}{\sqrt {y}} \]

[_Bernoulli]

15245

\[ {}y^{\prime }+3 y = \sqrt {y}\, \sin \left (t \right ) \]

[_Bernoulli]

15246

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15247

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15248

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15249

\[ {}y^{\prime }-\frac {y}{t} = t^{2} y^{{3}/{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15253

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15255

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

15260

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15272

\[ {}y^{\prime }+2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

15274

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15278

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15286

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{4} \]
i.c.

[_Bernoulli]

15297

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15299

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15301

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15303

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15312

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15322

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

15323

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15325

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15336

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

15337

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

15827

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

15828

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

15859

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

15866

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

15916

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15942

\[ {}y^{\prime }+2 y x = 2 x y^{2} \]

[_separable]

15943

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15947

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

15948

\[ {}2 y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

[_Bernoulli]

15950

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

15971

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15973

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

15977

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

16031

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

16035

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

16039

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16045

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16047

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16049

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16050

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16058

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16059

\[ {}y+y^{\prime } x = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]