| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
15.085 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.144 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.351 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=4 x^{2}+2 x +3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.878 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=52 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
27.185 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
22.173 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=30 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
34.381 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{\frac {x}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
5.265 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-5 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.340 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
33.095 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=25 \sin \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.838 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
12.034 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
37.639 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-4 \cos \left (x \right )+7 \sin \left (x \right ) \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.819 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-200 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
26.398 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
38.354 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=18 x^{2}+3 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
38.287 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=9 x^{4}-9 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
44.359 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=x^{3} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
44.168 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
53.579 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
20.652 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=54 x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.169 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (x \right ) {\mathrm e}^{x} x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.978 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
29.721 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (12 x -4\right ) {\mathrm e}^{-5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
37.869 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=39 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
36.809 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
37.984 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=20 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.531 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
5.452 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=3 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.800 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
24.872 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=\left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.891 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=4 x \,{\mathrm e}^{6 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
39.441 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
21.254 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{-5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
24.269 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=24 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.556 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=8 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
38.132 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
37.759 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=\sin \left (x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
32.910 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=100 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
11.707 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
33.277 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=10 x^{2}+4 x +8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
27.928 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
28.130 |
|
| \begin{align*}
y^{\prime \prime }+y&=6 \cos \left (x \right )-3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
28.023 |
|
| \begin{align*}
y^{\prime \prime }+y&=6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.420 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
35.527 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
29.922 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
33.560 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-8 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
33.439 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
33.454 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
33.793 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.720 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
43.089 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{4 x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
39.253 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{2 x} \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
48.836 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=x^{3} \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
29.918 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{2} {\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.571 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
33.534 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }&=12 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }&=10 \sin \left (2 x \right ) \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }&=32 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }&=32 x \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=x^{2} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=30 \cos \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime }&=x^{2} \sin \left (3 x \right ) \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime }&=x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=30 x \cos \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=3 \cos \left (x \right ) x \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.668 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=3 \cos \left (x \right ) {\mathrm e}^{x} x \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=5 x^{5} {\mathrm e}^{2 x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
39.480 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
30.761 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=5 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
21.340 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=20 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
28.413 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=\frac {5}{x^{3}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.547 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {50}{x^{3}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.851 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=85 \cos \left (2 \ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
20.106 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
7.319 |
|
| \begin{align*}
3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y&=4 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
7.016 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=\frac {10}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
6.313 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=6 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.324 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=64 x^{2} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
7.672 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 \sqrt {x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
8.353 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.436 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
28.833 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=6 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
39.916 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
34.915 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
37.089 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
7.339 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=12 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
4.440 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
5.515 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.441 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=\frac {1}{x -2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.463 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=x^{3} {\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
7.948 |
|
| \begin{align*}
y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
37.130 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x +1\right )^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
17.631 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=\frac {10}{x} \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= -15 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
7.441 |
|