2.2.174 Problems 17301 to 17400

Table 2.349: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

17301

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

1.516

17302

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

2.523

17303

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

[_separable]

1.423

17304

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

[_separable]

2.466

17305

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1.819

17306

\[ {}y y^{\prime } = \left (x +x y^{2}\right ) {\mathrm e}^{x^{2}} \]

[_separable]

2.308

17307

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

[_separable]

1.863

17308

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1.168

17309

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

[_separable]

1.907

17310

\[ {}y^{\prime } = 4 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

6.425

17311

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

2.296

17312

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

2.045

17313

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

4.365

17314

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

3.654

17315

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

2.052

17316

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

2.528

17317

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

3.414

17318

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

2.138

17319

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

2.151

17320

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

3.959

17321

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

6.777

17322

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]
i.c.

[_separable]

3.010

17323

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

2.012

17324

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

3.415

17325

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

2.677

17326

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

38.212

17327

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

5.147

17328

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]
i.c.

[_separable]

5.960

17329

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]
i.c.

[_separable]

2.343

17330

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

2.056

17331

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

3.004

17332

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]
i.c.

[_separable]

4.135

17333

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

2.878

17334

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

2.748

17335

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{1+t} \]
i.c.

[_separable]

3.295

17336

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

[_quadrature]

1.347

17337

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

1.405

17338

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.682

17339

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

[[_linear, ‘class A‘]]

1.689

17340

\[ {}y^{\prime }+\frac {y}{t} = 5+\cos \left (2 t \right ) \]

[_linear]

1.651

17341

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.288

17342

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

1.362

17343

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

2.428

17344

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

2.213

17345

\[ {}2 y^{\prime }+y = 3 t \]

[[_linear, ‘class A‘]]

1.201

17346

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

[_linear]

1.384

17347

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.408

17348

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

1.306

17349

\[ {}y^{\prime }-y = 2 t \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.477

17350

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.962

17351

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]
i.c.

[_linear]

1.739

17352

\[ {}y^{\prime }+\frac {2 y}{t} = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

1.607

17353

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.459

17354

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]
i.c.

[_linear]

1.689

17355

\[ {}t^{3} y^{\prime }+4 t^{2} y = {\mathrm e}^{-t} \]
i.c.

[_linear]

1.553

17356

\[ {}t y^{\prime }+\left (1+t \right ) y = t \]
i.c.

[_linear]

1.479

17357

\[ {}y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.525

17358

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1.447

17359

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1.594

17360

\[ {}t y^{\prime }+\left (1+t \right ) y = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1.961

17361

\[ {}t y^{\prime }+2 y = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

1.511

17362

\[ {}\sin \left (t \right ) y^{\prime }+\cos \left (t \right ) y = {\mathrm e}^{t} \]
i.c.

[_linear]

38.480

17363

\[ {}y^{\prime }+\frac {y}{2} = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.677

17364

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]
i.c.

[[_linear, ‘class A‘]]

1.393

17365

\[ {}y^{\prime }+\frac {y}{4} = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

2.043

17366

\[ {}y^{\prime }-y = 1+3 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.576

17367

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

1.544

17368

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

[[_linear, ‘class A‘]]

1.725

17369

\[ {}y^{\prime }+\frac {y}{t} = 3 \cos \left (2 t \right ) \]

[_linear]

1.521

17370

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

1.361

17371

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

1.258

17372

\[ {}\left (t -3\right ) y^{\prime }+\ln \left (t \right ) y = 2 t \]
i.c.

[_linear]

2.865

17373

\[ {}t \left (t -4\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1.972

17374

\[ {}y^{\prime }+\tan \left (t \right ) y = \sin \left (t \right ) \]
i.c.

[_linear]

1.921

17375

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

2.173

17376

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

1.940

17377

\[ {}\ln \left (t \right ) y^{\prime }+y = \cot \left (t \right ) \]
i.c.

[_linear]

2.792

17378

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.734

17379

\[ {}y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

[‘y=_G(x,y’)‘]

1.368

17380

\[ {}y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

[‘y=_G(x,y’)‘]

2.116

17381

\[ {}y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

[‘y=_G(x,y’)‘]

1.375

17382

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1.362

17383

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1.606

17384

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

1.948

17385

\[ {}y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.415

17386

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

6.197

17387

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

2.282

17388

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

1.904

17389

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]
i.c.

[_separable]

2.177

17390

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

2.138

17391

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1.602

17392

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1.579

17393

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.694

17394

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]
i.c.

[_separable]

1.258

17395

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

3.109

17396

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.082

17397

\[ {}3 x^{2}-2 x y+2+\left (6 y^{2}-x^{2}+3\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.361

17398

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_separable]

2.122

17399

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.664

17400

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.419