# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = 2 x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \ln \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = 4 y
\] |
[_separable] |
✓ |
|
\[
{}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x \sec \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime } = \left (y+1\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+x +y+x y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 4 x^{3} y-y
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}-y+x y^{\prime } = 2 x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = 3 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1-y\right ) \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+x +y+x y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+4\right ) y^{\prime }+3 x y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+p \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} y^{\prime }+2 x y^{3} = 6 x
\] |
[_separable] |
✓ |
|
\[
{}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0
\] |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
|
\[
{}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 y+x^{4} y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{2}+x^{2} y^{\prime } = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2}
\] |
[_separable] |
✓ |
|
\[
{}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 \left (y+7\right ) x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}-x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \ln \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = 4 y
\] |
[_separable] |
✓ |
|
\[
{}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x \sec \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = \left (y+1\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+x +y+x y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 4 x^{3} y-y
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}-y+x y^{\prime } = 2 x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = 3 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1-y\right ) \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+x +y+x y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+4\right ) y^{\prime }+3 x y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{2} y^{\prime }+2 x y^{3} = 6 x
\] |
[_separable] |
✓ |
|
\[
{}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0
\] |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
|
\[
{}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 y+x^{4} y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{2}+x^{2} y^{\prime } = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2}
\] |
[_separable] |
✓ |
|
\[
{}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 \left (y+7\right ) x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 \left (y+7\right ) x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}-x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) y^{2}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}-1}{3+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (-2 x +1\right ) y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {-2 x +1}{y}
\] |
[_separable] |
✓ |
|
\[
{}x +y y^{\prime } {\mathrm e}^{-x} = 0
\] |
[_separable] |
✓ |
|
\[
{}r^{\prime } = \frac {r^{2}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x}{y+x^{2} y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x}{1+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y^{2}+x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t \left (4-y\right ) y}{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t y \left (4-y\right )}{t +1}
\] |
[_separable] |
✓ |
|
\[
{}t \left (-4+t \right ) y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t \left (3-y\right ) y
\] |
[_separable] |
✓ |
|
\[
{}3+2 x +\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{2}+2 y+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3-6 x +y-2 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )}
\] |
[_separable] |
✓ |
|
\[
{}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{y-2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+2 x +y^{2}+2 x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}-1}{1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}2 y^{\prime }+x \left (y^{2}-1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {y \left (y+1\right )}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+3 x^{2} y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y \ln \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+3 y = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+\left (1+x \cot \left (x \right )\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {k y}{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (k x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }-2 y = -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}+2 x +1}{y-2}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y^{2}+y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{{3}/{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (x -1\right ) \left (y-1\right ) \left (y-2\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (y-1\right )^{2} y^{\prime } = 2 x +3
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+3 x +2}{y-2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x \left (y^{2}+y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {\left (y+1\right ) \left (y-1\right ) \left (y-2\right )}{x +1} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x \left (y+1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -2 x \left (y^{3}-3 y+2\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x}{1+2 y}
\] |
[_separable] |
✓ |
|
\[
{}x +y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x^{2} \left (y+1\right ) \left (y-2\right )^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) \left (-2+x \right ) y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \left (y^{2}-1\right )^{{2}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\tan \left (y\right )}{x -1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y = x y^{{3}/{2}}
\] |
[_separable] |
✓ |
|
\[
{}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 x -1\right ) \left (y-1\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y^{2}+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 x^{2} y+2 x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+\left (x^{4}-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 y+3 \left (x^{2}+y^{3} x^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (y+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \cos \left (t \right )+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}t^{2} y+y^{\prime } = t^{2}
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-2 t y+y^{\prime } = t
\] |
[_separable] |
✓ |
|
\[
{}4 t y+\left (t^{2}+1\right ) y^{\prime } = t
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (t +1\right ) \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1-t +y^{2}-t y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 t}{y+t^{2} y}
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}3 t y^{\prime } = y \cos \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y \cos \left (t \right )+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}t^{2} y+y^{\prime } = t^{2}
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-2 t y+y^{\prime } = t
\] |
[_separable] |
✓ |
|
\[
{}4 t y+\left (t^{2}+1\right ) y^{\prime } = t
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (t +1\right ) \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1-t +y^{2}-t y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 t}{y+t^{2} y}
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}3 t y^{\prime } = y \cos \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y^{a}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime }-1+y = 0
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (x \right ) y^{\prime }-y = 1
\] |
[_separable] |
✓ |
|
\[
{}y+3+\cot \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = x y \left (y^{\prime }-1\right )
\] |
[_separable] |
✓ |
|
\[
{}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y = x^{2} y^{\prime }+x y
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+y^{\prime } y+x^{2} y y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+2 y = 0
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2
\] |
[_separable] |
✓ |
|
\[
{}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x -2 x y\right ) y^{\prime }+2 y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y+x \left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime }-y-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}2 y+6 = x y y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = 2 y^{2}+2 y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}r^{\prime } = r \cot \left (\theta \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}-6+3 x = x y y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y \left (1+y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}x \,{\mathrm e}^{-y^{2}}+y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y
\] |
[_separable] |
✓ |
|
\[
{}4 y^{2} = x^{2} {y^{\prime }}^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = x +3 \ln \left (y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -x \,{\mathrm e}^{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (y\right ) = x^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{t}}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (t^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{t +1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+x y^{2} = 4 y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{x +y} y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x \ln \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y-\left (-2+x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3}
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = 3-2 x^{2} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )}
\] |
[_separable] |
✓ |
|
\[
{}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }+x y = a x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{3} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{2 x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{x +y} y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x \ln \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y-\left (x -1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3}
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = 3-2 x^{2} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2
\] |
[_separable] |
✓ |
|
\[
{}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }+x y = a x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{3} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}}
\] |
[_separable] |
✓ |
|
\[
{}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -2 y}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = \left (x +1\right ) \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x
\] |
[_separable] |
✓ |
|
\[
{}3 y^{2} y^{\prime } = 2 x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 6 x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \sec \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {4 x y}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x^{2}-1}
\] |
[_separable] |
✓ |
|
\[
{}-y^{2}+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}\cot \left (x \right ) y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-2 x y = 2 x
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = x y+y
\] |
[_separable] |
✓ |
|
\[
{}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = 2 y \left (y-1\right )
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{\prime } = 1-y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime } = x y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{2 x} y y^{\prime }+2 x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = \sqrt {y^{2}-9}
\] |
[_separable] |
✓ |
|
\[
{}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-\left (x +x y^{3}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (x -1\right ) y^{\prime } = \cot \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1+y^{2}\right )+\left (1+2 y\right ) {\mathrm e}^{-x} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{3}+\left (y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1-\left (y-2 x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+2}{x +1}
\] |
[_separable] |
✓ |
|
\[
{}x y+2 x^{3} y+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = a \,x^{n} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cot \left (x \right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sec \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \tan \left (x \right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y \left (y+3\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = a x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{n} \left (a +b y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cot \left (x \right ) \cot \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \tan \left (x \right ) \cot \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right )
\] |
[_separable] |
✓ |
|
\[
{}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = f \left (x \right ) g \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = a y
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+\left (b x +a \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = a +b y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = 4 y-4 \sqrt {y}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+2 y = \sqrt {1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y-\cot \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+\tan \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y \ln \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (x +a \right ) y^{\prime } = b +c y
\] |
[_separable] |
✓ |
|
\[
{}\left (x +a \right ) y^{\prime } = y \left (1-a y\right )
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{\prime } = y \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{\prime }+y \left (1+y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{\prime }+4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = -y+a
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (b x +a \right ) y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = a +b y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime } = \left (-2 x +1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}x \left (a x +1\right ) y^{\prime }+a -y = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{3} y^{\prime } = \left (x +1\right ) y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {x^{3}+1} = \sqrt {y^{3}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \left (4 x^{3}+\operatorname {a1} x +\operatorname {a0} \right )^{{2}/{3}}+\left (\operatorname {a0} +\operatorname {a1} y+4 y^{3}\right )^{{2}/{3}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y
\] |
[_separable] |
✓ |
|
\[
{}\left (-\sin \left (x \right )+1\right ) y^{\prime }+y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x +y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y+x \,{\mathrm e}^{x^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y+x \,{\mathrm e}^{-x} \left (y+1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = a x +b x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime } = x^{2} \left (1-y\right )
\] |
[_separable] |
✓ |
|
\[
{}3 y^{\prime } y+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}3 \left (2-y\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = a +b y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}x \left (y+1\right ) y^{\prime }-\left (1-x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right )
\] |
[_separable] |
✓ |
|
\[
{}y \left (1-x \right ) y^{\prime }+x \left (1-y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +a \right ) \left (x +b \right ) y^{\prime } = x y
\] |
[_separable] |
✓ |
|
\[
{}2 x y y^{\prime }+a +y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (a +b y\right ) y^{\prime } = c y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime } \sqrt {x^{2}+1} = y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{2} y^{\prime }+x \left (2-y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} y^{\prime } = x \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y \left (y+1\right ) y^{\prime } = x \left (x +1\right )
\] |
[_separable] |
✓ |
|
\[
{}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}x \left (a +y\right )^{2} y^{\prime } = b y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} \left (a +y\right )^{2} y^{\prime } = \left (x^{2}+1\right ) \left (y^{2}+a^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0
\] |
[_separable] |
✓ |
|
\[
{}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right )
\] |
[_separable] |
✓ |
|
\[
{}x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {b^{2}-y^{2}} = \sqrt {a^{2}-x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sqrt {y} = \sqrt {x}
\] |
[_separable] |
✓ |
|
\[
{}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y \left (y^{2}+x^{2}\right ) y^{\prime }+x^{4} y^{4} = 0
\] |
[_separable] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2} = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-x y^{\prime }+y \left (1-y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 \left (y+1\right )^{{3}/{2}}+3 x y^{\prime }-3 y = 0
\] |
[_separable] |
✓ |
|
\[
{}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2}
\] |
[_separable] |
✓ |
|
\[
{}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1
\] |
[_separable] |
✓ |
|
\[
{}\frac {y-x y^{\prime }}{y^{2}+y^{\prime }} = \frac {y-x y^{\prime }}{1+x^{2} y^{\prime }}
\] |
[_separable] |
✓ |
|
\[
{}7 y-3+\left (2 x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }-y^{2}+1 = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = a x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\frac {x}{y+1} = \frac {y y^{\prime }}{x +1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}a x y^{\prime }+2 y = x y y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right ) = y \ln \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y+x y^{2}-8 x = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y = x
\] |
[_separable] |
✓ |
|
\[
{}\left (x +x y\right ) y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}3 x y^{2} y^{\prime }+3 y^{3} = 1
\] |
[_separable] |
✓ |
|
\[
{}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}u \left (-v +1\right )+v^{2} \left (1-u\right ) u^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x y = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}3 x^{2} y+x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = x y+y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2}
\] |
[_separable] |
✓ |
|
\[
{}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \frac {1}{y^{3}}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = 3 x t^{2}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}}
\] |
[_separable] |
✓ |
|
\[
{}x v^{\prime } = \frac {1-4 v^{2}}{3 v}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}}
\] |
[_separable] |
✓ |
|
\[
{}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{3} \left (1-y\right )
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{2} = \sqrt {y+1}\, \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (y+1\right )}
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}x^{2}+2 y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t \cos \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y-2 t y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (x -3\right ) \left (y+1\right )^{{2}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+1\right ) y^{\prime } = t y-y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1}
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x y = x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }+2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}x \left (-3+y\right ) y^{\prime } = 4 y
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime } = x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}x^{3}+\left (y+1\right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} \left (y+1\right )+y^{2} \left (x -1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime }-\left (x +1\right ) \sqrt {y-1} = 0
\] |
[_separable] |
✓ |
|
\[
{}y+\left (x^{2}-4 x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-2 y+3 x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x +x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}x +y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}4 y+x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y-\left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+2 y-\left (4-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = \left (y+1\right ) \left (1-x \right )
\] |
[_separable] |
✓ |
|
\[
{}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+2 y = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y^{2} = \left (x^{2}+x \right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-y = x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y-x y^{2}+x = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right ) y
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = \sqrt {1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = y^{2}
\] |
[_separable] |
✓ |
|
\[
{}2 x^{2} y y^{\prime }+y^{2} = 2
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y^{2} = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {y}{x -1}+\frac {x y^{\prime }}{y+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x \sqrt {1-y^{2}}+y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (y-1\right ) \left (x +1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
|
\[
{}z^{\prime } = 10^{x +z}
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (y+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-2 x y+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x +3+\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t}
\] |
[_separable] |
✓ |
|
\[
{}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+x}{y-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} y^{2}-4 x^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = {\mathrm e}^{2 x}
\] |
[_separable] |
✓ |
|
\[
{}x^{5} y^{\prime }+y^{5} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 4 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y \ln \left (y\right )-x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \left (-4 x^{2}+1\right ) \tan \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (y\right ) = x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = y-1
\] |
[_separable] |
✓ |
|
\[
{}x y^{2}-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x +1
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{2} y^{\prime } = x +2
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime } = -x^{2}+1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x y = x y^{4}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = 2 x^{2} y+y \ln \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right ) y^{\prime } = \sec \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}2 x y+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} y^{\prime } = x
\] |
[_separable] |
✓ |
|
\[
{}\csc \left (x \right ) y^{\prime } = \csc \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0
\] |
[_separable] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x^{2} y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x \ln \left (x \right )}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \left (\cos \left (y\right )+y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )}
\] |
[_separable] |
✓ |
|
\[
{}y = x y^{\prime }+x^{2} {y^{\prime }}^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = a x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y^{2}-3 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {y+1}|} \left (x +1\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {\sqrt {{| y \left (y-1\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }-y^{2}+1 = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }-y \ln \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }-\left (x -1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {y^{2}-1} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {-x^{2}+1}\, y^{\prime }-y \sqrt {y^{2}-1} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (2 x \right ) y^{\prime }+\sin \left (2 y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y+x y^{2}-4 x = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y y^{\prime }+2 y^{2}+1 = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} \left (y-1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}2 y^{3} y^{\prime }+x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime } f_{\nu }\left (x \right ) \left (-y+y^{p +1}\right )}{y-1}-\frac {g_{\nu }\left (x \right ) \left (-y+y^{q +1}\right )}{y-1} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \left (\sin \left (x \right )+1\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 y^{\prime } \sin \left (x \right ) \sin \left (y\right )+5 \cos \left (x \right )^{4} y = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0
\] |
[_linear] |
✓ |
|
\[
{}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = f \left (x \right ) g \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{3}+x^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y+x y^{2} = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y+x \left (1-y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y-x \left (y+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{t}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -\frac {t}{x}
\] |
[_separable] |
✓ |
|
\[
{}2 x^{\prime } t = x
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{t +1}
\] |
[_separable] |
✓ |
|
\[
{}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right )
\] |
[_separable] |
✓ |
|
\[
{}\left (2 u+1\right ) u^{\prime }-t -1 = 0
\] |
[_separable] |
✓ |
|
\[
{}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}\left (t +1\right ) x^{\prime }+x^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = 2 t x^{2}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = t^{2} {\mathrm e}^{-x}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{t +x}
\] |
[_separable] |
✓ |
|
\[
{}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2} \tan \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {t^{2}}{1-x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \left (a +\frac {b}{t}\right ) x
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (\theta \right ) v^{\prime }+v = 3
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = 2 x t
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+p \left (t \right ) x = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x^{3}+3 t x^{2} x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x+3 t x^{2} x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2}-t^{2} x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}t \cot \left (x\right ) x^{\prime } = -2
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+4 x y = 8 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} \sin \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{-2+x}
\] |
[_separable] |
✓ |
|
\[
{}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (4+x \right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y+2+y \left (4+x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+4 x y = 8 x
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{x t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+3 x^{2} y = x^{2}
\] |
[_separable] |
✓ |
|
\[
{}2 x \left (y+1\right )-\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (y+1\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x
\] |
[_separable] |
✓ |
|
\[
{}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-1+x \left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+x y = x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2}
\] |
[_separable] |
✓ |
|
\[
{}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}4 x y y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = t^{3} \left (-x+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = x t^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = k y
\] |
[_separable] |
✓ |
|
\[
{}i^{\prime } = p \left (t \right ) i
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+x t = 4 t
\] |
[_separable] |
✓ |
|
\[
{}V^{\prime }\left (x \right )+2 y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y = x y^{\prime }+\frac {1}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right )
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{y^{2}-x}
\] |
[_separable] |
✓ |
|
\[
{}x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}5 y^{\prime }-x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y-\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y-a +x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}1+s^{2}-\sqrt {t}\, s^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}r^{\prime }+r \tan \left (t \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y = x y^{\prime }+y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y+x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{\prime }-y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-2 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } x \ln \left (x \right )-\left (\ln \left (x \right )+1\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x y}{1-y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -x \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{y-x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x +x y
\] |
[_separable] |
✓ |
|
\[
{}x \,{\mathrm e}^{y}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y y^{\prime }+y^{2} = -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}x -y^{\prime } y = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y \left (1-y\right )-2 y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {3 x^{2}}{2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {3 x^{2}}{2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {3 x^{2}}{2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {3 x^{2}}{2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x y^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x y^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x y^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x y^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x y^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+1}{t +1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{4} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t y^{2}+3 y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{t^{2} y+y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y^{{1}/{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y+1}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {4 t}{1+3 y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}v^{\prime } = t^{2} v-2-2 v+t^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{t y+t +y+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}w^{\prime } = \frac {w}{t}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -x t
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2} y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{y-t^{2} y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y^{2}+2 y^{2}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {t^{2}}{x+t^{3} x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1+y^{2}\right ) t
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (t +1\right ) y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y+t y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2}+t^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t +t y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{y-2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t y}{t^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = -x t
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2} y^{3}+y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (t +1\right )^{2}}{\left (y+1\right )^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t^{2}}{y+t^{3} y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2} y+1+y+t^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y+1}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = 2 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+3 x y = 6 x
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime }+x y^{2} = x
\] |
[_separable] |
✓ |
|
\[
{}\left (-2+x \right ) y^{\prime } = y+3
\] |
[_separable] |
✓ |
|
\[
{}\left (y-2\right ) y^{\prime } = x -3
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x y = 4 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y-3 x -2 y+6
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = {\mathrm e}^{x -3 y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = y^{2}+9
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) y^{\prime } = \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x -1+2 x y-y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x y^{2}+x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y-4 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x y^{2}-9 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y-4 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y-3 x -2 y+6
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 3 x y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-3 x^{2} y^{2} = -3 x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-3 x^{2} y^{2} = 3 x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x -1+2 x y-y
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y^{2}-y
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = y^{2}-y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}-1}{x y}
\] |
[_separable] |
✓ |
|
\[
{}\left (y^{2}-1\right ) y^{\prime } = 4 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-2 x y = x
\] |
[_separable] |
✓ |
|
\[
{}2-2 x +3 y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y^{4}+x y^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x \left (y+1\right )-y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = 2 y^{2}-6 y
\] |
[_separable] |
✓ |
|
\[
{}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x y-3 x}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x y^{2}+3 y^{2}+x +3
\] |
[_separable] |
✓ |
|
\[
{}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{3}-y^{3} \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{t} = \sqrt {y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \sqrt {t}
\] |
[_separable] |
✓ |
|
\[
{}t y^{\prime } = y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \tan \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+1}{t +1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2+y}{2 t +1}
\] |
[_separable] |
✓ |
|
\[
{}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right )
\] |
[_separable] |
✓ |
|
\[
{}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 y+10 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 y+2 t}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )}
\] |
[_separable] |
✓ |
|
\[
{}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )}
\] |
[_separable] |
✓ |
|
\[
{}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}}
\] |
[_separable] |
✓ |
|
\[
{}\frac {-2+x}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )}
\] |
[_separable] |
✓ |
|
\[
{}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {5^{-t}}{y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1
\] |
[_separable] |
✓ |
|
\[
{}4 \left (x -1\right )^{2} y^{\prime }-3 \left (y+3\right )^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (t -y\right )+\sin \left (y+t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {t}}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{t -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+3}{3 x +1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 y+1}{x +3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y \cos \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y^{2} \cos \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y}\, \cos \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y f \left (t \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {y-2}{-2+x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = y f \left (t \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-x y = x
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 t y = 2 t
\] |
[_separable] |
✓ |
|
\[
{}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t
\] |
[_separable] |
✓ |
|
\[
{}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t y^{2}+y^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2}+2 t y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 t y^{2}+2 t^{2} y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}t^{2} y+t^{3} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t}
\] |
[_separable] |
✓ |
|
\[
{}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {t^{2}+1}+y y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {2 y}{x} = -x^{2} y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 t^{5}}{5 y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}}
\] |
[_separable] |
✓ |
|
\[
{}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+t y = t
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y^{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{y^{3}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {y}{t -2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{y}
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \left (y-1\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y+1}{x -1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y^{2} = x y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \ln \left (y\right )+x y^{\prime } = 1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = a^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}
\] |
[_separable] |
✓ |
|
\[
{}x^{3} y^{\prime }-\sin \left (y\right ) = 1
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = y-1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x \left (\pi +y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+2 x y = 2 x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{4}}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y^{3} \sin \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {7 x^{2}-1}{7+5 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2}
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \sqrt {1-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{1+y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \left (y-y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1-12 x \right ) y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3-2 x}{y}
\] |
[_separable] |
✓ |
|
\[
{}x +y \,{\mathrm e}^{-x} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}r^{\prime } = \frac {r^{2}}{\theta }
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x}{y+x^{2} y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x}{1+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x^{2} {\mathrm e}^{-3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11}
\] |
[_separable] |
✓ |
|
\[
{}x^{2} y^{\prime } = y-x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y}
\] |
[_separable] |
✓ |
|
\[
{}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-4}}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 y^{2}+x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t y \left (4-y\right )}{3}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t y \left (4-y\right )}{t +1}
\] |
[_separable] |
✓ |
|
\[
{}t \left (-4+t \right ) y^{\prime }+y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 t}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 t y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = t y \left (3-y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x +3+\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x +1
\] |
[_separable] |
✓ |
|
\[
{}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1
\] |
[_separable] |
✓ |
|
\[
{}x \left (x -1\right ) y^{\prime } = y \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right )
\] |
[_separable] |
✓ |
|
\[
{}\frac {\sqrt {x}\, y^{\prime }}{y} = 1
\] |
[_separable] |
✓ |
|
\[
{}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 2 y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = {\mathrm e}^{2 x}
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = y-1
\] |
[_separable] |
✓ |
|
\[
{}x^{5} y^{\prime }+y^{5} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime } = \left (-2 x^{2}+1\right ) \tan \left (y\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 2 x y
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } \sin \left (y\right ) = x^{2}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }-\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}y \ln \left (y\right )-x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-2 y+3 x}
\] |
[_separable] |
✓ |
|
\[
{}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y y^{\prime } = \left (x +1\right ) \left (y+1\right )
\] |
[_separable] |
✓ |
|
\[
{}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = x y^{3} y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}y^{2}-y+x y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }+y = x^{2} y^{\prime }+y^{2}
\] |
[_separable] |
✓ |
|
\[
{}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0
\] |
[_separable] |
✓ |
|
\[
{}3 t^{2} x-x t +\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+x \tan \left (t \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime }+2 x t +t x^{4} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x}
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )}
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+x y = x
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = x \left (y^{2} a +b \right )
\] |
[_separable] |
✓ |
|
\[
{}n^{\prime } = \left (n^{2}+1\right ) x
\] |
[_separable] |
✓ |
|
\[
{}v^{\prime }+\frac {2 v}{u} = 3 v
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}}
\] |
[_separable] |
✓ |
|
\[
{}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}}
\] |
[_separable] |
✓ |
|
\[
{}v^{\prime }+2 v u = 2 u
\] |
[_separable] |
✓ |
|
\[
{}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+\sin \left (x \right ) y = y^{2} \sin \left (x \right )
\] |
[_separable] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2}
\] |
[_separable] |
✓ |
|
\[
{}y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y \left (y+3\right ) y^{\prime } = x \left (3+2 y\right )
\] |
[_separable] |
✓ |
|
\[
{}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime }-y-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}a \left (x y^{\prime }+2 y\right ) = x y y^{\prime }
\] |
[_separable] |
✓ |
|
\[
{}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0
\] |
[_separable] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = a x
\] |
[_separable] |
✓ |
|
\[
{}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0
\] |
[_separable] |
✓ |
|
\[
{}x y \left (y-x y^{\prime }\right ) = x +y^{\prime } y
\] |
[_separable] |
✓ |
|
\[
{}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3}
\] |
[_separable] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0
\] |
[_separable] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|