2.3.2 first order ode separable

Table 2.377: first order ode separable

#

ODE

CAS classification

Solved?

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

28

\[ {}y^{\prime } = x \ln \left (y\right ) \]
i.c.

[_separable]

33

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

34

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

41

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = \sin \left (x \right ) y \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

45

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

48

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

50

\[ {}\left (x +1\right )^{2} y^{\prime } = \left (y+1\right )^{2} \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y^{\prime } y = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

54

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

55

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

56

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

58

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

61

\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+x y^{\prime } = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

68

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

83

\[ {}x y^{\prime }+y = 3 x y \]
i.c.

[_separable]

87

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

92

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

183

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

213

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

673

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

674

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

677

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = \sin \left (x \right ) y \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

681

\[ {}2 \sqrt {x}\, y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

686

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (y+1\right )^{2} \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y^{\prime } y = x \left (1+y^{2}\right ) \]

[_separable]

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

693

\[ {}x^{2} y^{\prime } = 1-x^{2}+y^{2}-x^{2} y^{2} \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

696

\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+x y^{\prime } = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

703

\[ {}2 \sqrt {x}\, y^{\prime } = \cos \left (y\right )^{2} \]
i.c.

[_separable]

714

\[ {}x y^{\prime }+y = 3 x y \]
i.c.

[_separable]

718

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

723

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

775

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{2} \]

[_separable]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

805

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1132

\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \]

[_separable]

1133

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \]

[_separable]

1134

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

1136

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (-2 x +1\right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {-2 x +1}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1145

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \]
i.c.

[_separable]

1146

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

1147

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1149

\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \]
i.c.

[_separable]

1150

\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1152

\[ {}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

1153

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]

[_separable]

1167

\[ {}t \left (-4+t \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1172

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1173

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1193

\[ {}3+2 x +\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

1196

\[ {}2 x y^{2}+2 y+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1204

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1207

\[ {}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1219

\[ {}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \]

[_separable]

1221

\[ {}y^{\prime } = 3-6 x +y-2 x y \]

[_separable]

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{y-2} = 0 \]

[_separable]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

1521

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (y+1\right )}{x} \]
i.c.

[_separable]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}x y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}x y^{\prime }+3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}x y^{\prime }+\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}x y^{\prime }+\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1569

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

1573

\[ {}x y^{\prime }-2 y = -1 \]
i.c.

[_separable]

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{y-2} \]

[_separable]

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1580

\[ {}x y^{\prime }+y^{2}+y = 0 \]

[_separable]

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

1582

\[ {}x^{2} y y^{\prime } = \left (y^{2}-1\right )^{{3}/{2}} \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (y-1\right ) \left (y-2\right ) \]

[_separable]

1586

\[ {}\left (y-1\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{y-2} \]
i.c.

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (y+1\right ) \left (y-1\right ) \left (y-2\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (y+1\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1597

\[ {}x +y^{\prime } y = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (y+1\right ) \left (y-2\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (-2+x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1601

\[ {}y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

[_separable]

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

1613

\[ {}y^{\prime } = 2 x y \]

[_separable]

1617

\[ {}y^{\prime } = x \left (y^{2}-1\right )^{{2}/{3}} \]

[_separable]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1622

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]
i.c.

[_separable]

1623

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]
i.c.

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]
i.c.

[_separable]

1636

\[ {}y^{\prime }-x y = x y^{{3}/{2}} \]
i.c.

[_separable]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

1692

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1701

\[ {}\left (2 x -1\right ) \left (y-1\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

[_separable]

1713

\[ {}y-x y^{\prime } = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1722

\[ {}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+y^{3} x^{2}\right ) y^{\prime } = 0 \]

[_separable]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (y+1\right ) y^{\prime } = 0 \]

[_separable]

2299

\[ {}y \cos \left (t \right )+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (t +1\right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2329

\[ {}3 t y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2472

\[ {}y \cos \left (t \right )+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (t +1\right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2500

\[ {}3 t y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

[_separable]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2844

\[ {}x y^{\prime }+y = 0 \]

[_separable]

2845

\[ {}y^{\prime } = 2 x y \]

[_separable]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2848

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2849

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

[_separable]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2853

\[ {}x y^{\prime }+y = y^{2} \]

[_separable]

2854

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

2855

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

2856

\[ {}x y^{\prime }+y = x y \left (y^{\prime }-1\right ) \]

[_separable]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2858

\[ {}y = x^{2} y^{\prime }+x y \]

[_separable]

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2860

\[ {}y^{2}+y^{\prime } y+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2861

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2862

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]
i.c.

[_separable]

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]
i.c.

[_separable]

2925

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2939

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

[_separable]

2953

\[ {}\left (x^{2}-1\right ) y+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2991

\[ {}y^{\prime }-x y = \frac {x}{y} \]

[_separable]

2993

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2996

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

3004

\[ {}\left (1-x \right ) y^{\prime }-y-1 = 0 \]

[_separable]

3011

\[ {}2 y+6 = x y y^{\prime } \]

[_separable]

3015

\[ {}y-x y^{\prime } = 2 y^{2}+2 y^{\prime } \]

[_separable]

3016

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

3020

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

3024

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

3028

\[ {}-6+3 x = x y y^{\prime } \]

[_separable]

3031

\[ {}x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

[_separable]

3033

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

3040

\[ {}x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]
i.c.

[_separable]

3042

\[ {}x \,{\mathrm e}^{-y^{2}}+y^{\prime } y = 0 \]
i.c.

[_separable]

3052

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3057

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3285

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

[_separable]

3334

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3409

\[ {}y^{\prime } = x y \]

[_separable]

3410

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3412

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

3413

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3431

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3438

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3451

\[ {}y^{\prime } = \frac {2 y}{t +1} \]
i.c.

[_separable]

3457

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3458

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3459

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3470

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

3473

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3515

\[ {}y^{\prime } = 2 x y \]

[_separable]

3516

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3517

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3518

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3519

\[ {}y-\left (-2+x \right ) y^{\prime } = 0 \]

[_separable]

3520

\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \]

[_separable]

3521

\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \]

[_separable]

3522

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3523

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

3525

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3526

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3527

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3528

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3529

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3562

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3593

\[ {}y^{\prime } = 2 x y \]

[_separable]

3594

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3595

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3596

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3597

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3598

\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \]

[_separable]

3599

\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \]

[_separable]

3600

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3601

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

3602

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3603

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3604

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3605

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3606

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3683

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

4094

\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \]

[_separable]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4096

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4105

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4110

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

4111

\[ {}x y y^{\prime } = \left (x +1\right ) \left (y+1\right ) \]
i.c.

[_separable]

4190

\[ {}y^{\prime } y = x \]

[_separable]

4213

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

4214

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

4215

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4217

\[ {}y^{\prime } = x \sec \left (y\right ) \]

[_separable]

4219

\[ {}x y^{\prime } = y \]

[_separable]

4220

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

4221

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

4222

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

4223

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

4224

\[ {}y^{\prime }+2 x y = 0 \]
i.c.

[_separable]

4225

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4227

\[ {}y^{\prime }-2 x y = 2 x \]
i.c.

[_separable]

4228

\[ {}x y^{\prime } = x y+y \]
i.c.

[_separable]

4230

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

4231

\[ {}x y^{\prime } = 2 y \left (y-1\right ) \]
i.c.

[_separable]

4232

\[ {}2 x y^{\prime } = 1-y^{2} \]
i.c.

[_separable]

4233

\[ {}\left (1-x \right ) y^{\prime } = x y \]

[_separable]

4234

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4235

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

4236

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

[_separable]

4237

\[ {}{\mathrm e}^{2 x} y y^{\prime }+2 x = 0 \]
i.c.

[_separable]

4238

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

4254

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

4255

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

4257

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4258

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4265

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4295

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

4301

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

4302

\[ {}x \left (x -1\right ) y^{\prime } = \cot \left (y\right ) \]

[_separable]

4303

\[ {}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \]

[_separable]

4304

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

[_separable]

4305

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4307

\[ {}\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

4309

\[ {}x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4310

\[ {}x \left (1+y^{2}\right )+\left (1+2 y\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4311

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4312

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4313

\[ {}x y^{3}+\left (y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

[_separable]

4398

\[ {}y^{\prime } = \frac {y+2}{x +1} \]

[_separable]

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

[_separable]

4429

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4618

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4621

\[ {}y^{\prime } = \cot \left (x \right ) y \]

[_separable]

4624

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4632

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4634

\[ {}y^{\prime } = \tan \left (x \right ) y \]

[_separable]

4643

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4671

\[ {}y^{\prime } = x y \left (y+3\right ) \]

[_separable]

4675

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4676

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4682

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4684

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4690

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4695

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4709

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

4710

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

4715

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4716

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

4717

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4718

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

4719

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4720

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4721

\[ {}y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right ) = 0 \]

[_separable]

4723

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

4724

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

4727

\[ {}y^{\prime }+\csc \left (2 x \right ) \sin \left (2 y\right ) = 0 \]

[_separable]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4732

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

4733

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4737

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

4752

\[ {}x y^{\prime } = a y \]

[_separable]

4759

\[ {}x y^{\prime }+\left (b x +a \right ) y = 0 \]

[_separable]

4766

\[ {}x y^{\prime } = a +b y^{2} \]

[_separable]

4787

\[ {}x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

4792

\[ {}x y^{\prime } = 4 y-4 \sqrt {y} \]

[_separable]

4793

\[ {}x y^{\prime }+2 y = \sqrt {1+y^{2}} \]

[_separable]

4802

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \]

[_separable]

4803

\[ {}x y^{\prime } = y-\cot \left (y\right )^{2} \]

[_separable]

4809

\[ {}x y^{\prime }+\tan \left (y\right ) = 0 \]

[_separable]

4815

\[ {}x y^{\prime } = y \ln \left (y\right ) \]

[_separable]

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4838

\[ {}2 x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

4839

\[ {}2 x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

[_separable]

4841

\[ {}2 x y^{\prime }+4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4849

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4859

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

[_separable]

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

[_separable]

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[_separable]

4894

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

[_separable]

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4906

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

4913

\[ {}x \left (x +1\right ) y^{\prime } = \left (-2 x +1\right ) y \]

[_separable]

4919

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4920

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4922

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4924

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4925

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right ) = 0 \]

[_separable]

4927

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4939

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

4940

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

4941

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4948

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4957

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4958

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4972

\[ {}\left (-x^{4}+1\right ) y^{\prime } = 2 x \left (1-y^{2}\right ) \]

[_separable]

4976

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4988

\[ {}y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

[_separable]

4989

\[ {}\left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}} \]

[_separable]

4991

\[ {}y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

[_separable]

4992

\[ {}y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}} \]

[_separable]

4993

\[ {}x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}} \]

[_separable]

4994

\[ {}x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}} \]

[_separable]

4998

\[ {}y^{\prime } \sqrt {x^{3}+1} = \sqrt {y^{3}+1} \]

[_separable]

4999

\[ {}y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )} \]

[_separable]

5000

\[ {}y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}} \]

[_separable]

5001

\[ {}y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}} \]

[_separable]

5005

\[ {}y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}} = 0 \]

[_separable]

5006

\[ {}y^{\prime } \left (4 x^{3}+\operatorname {a1} x +\operatorname {a0} \right )^{{2}/{3}}+\left (\operatorname {a0} +\operatorname {a1} y+4 y^{3}\right )^{{2}/{3}} = 0 \]

[_separable]

5009

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

5010

\[ {}\left (-\sin \left (x \right )+1\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

5011

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

5015

\[ {}x +y^{\prime } y = 0 \]

[_separable]

5016

\[ {}y^{\prime } y+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

5019

\[ {}y^{\prime } y+x \,{\mathrm e}^{-x} \left (y+1\right ) = 0 \]

[_separable]

5025

\[ {}y^{\prime } y = a x +b x y^{2} \]

[_separable]

5031

\[ {}\left (y+1\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

[_separable]

5074

\[ {}3 y^{\prime } y+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

5075

\[ {}3 \left (2-y\right ) y^{\prime }+x y = 0 \]

[_separable]

5101

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

5108

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

5110

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

5114

\[ {}x \left (y+1\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[_separable]

5115

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5116

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5121

\[ {}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

[_separable]

5133

\[ {}y \left (1-x \right ) y^{\prime }+x \left (1-y\right ) = 0 \]

[_separable]

5134

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = x y \]

[_separable]

5136

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

5156

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

5165

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5166

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

5167

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

5174

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5182

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

5185

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

[_separable]

5186

\[ {}\left (y+1\right ) y^{\prime } \sqrt {x^{2}+1} = y^{3} \]

[_separable]

5188

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

5189

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

5203

\[ {}y \left (y+1\right ) y^{\prime } = x \left (x +1\right ) \]

[_separable]

5229

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

5236

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

5253

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

5258

\[ {}x^{2} \left (a +y\right )^{2} y^{\prime } = \left (x^{2}+1\right ) \left (y^{2}+a^{2}\right ) \]

[_separable]

5259

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

5260

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

5263

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

5275

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

5281

\[ {}x y^{3} y^{\prime } = \left (-x^{2}+1\right ) \left (1+y^{2}\right ) \]

[_separable]

5311

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

5312

\[ {}y^{\prime } \sqrt {b^{2}-y^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5317

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

5318

\[ {}\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 1+y^{2} \]

[_separable]

5332

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

5345

\[ {}{y^{\prime }}^{2} = x^{2} y^{2} \]

[_separable]

5404

\[ {}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5409

\[ {}{y^{\prime }}^{2}-x y \left (y^{2}+x^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5472

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5476

\[ {}x^{2} {y^{\prime }}^{2}-x y^{\prime }+y \left (1-y\right ) = 0 \]

[_separable]

5485

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5487

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5488

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0 \]

[_separable]

5489

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5501

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5527

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5539

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

[_separable]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5662

\[ {}2 \left (y+1\right )^{{3}/{2}}+3 x y^{\prime }-3 y = 0 \]

[_separable]

5685

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

5699

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5700

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5702

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

[_separable]

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5749

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

[_separable]

5770

\[ {}\frac {y-x y^{\prime }}{y^{2}+y^{\prime }} = \frac {y-x y^{\prime }}{1+x^{2} y^{\prime }} \]

[_separable]

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5859

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

5870

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

5880

\[ {}2 y-x y \ln \left (x \right )-2 y^{\prime } x \ln \left (x \right ) = 0 \]

[_separable]

5886

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

5899

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

[_separable]

5900

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5914

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

5915

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

6025

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

6031

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

6032

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

6033

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

6035

\[ {}\frac {x}{y+1} = \frac {y y^{\prime }}{x +1} \]

[_separable]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

6038

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

6039

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

6093

\[ {}x y^{\prime } = y \]
i.c.

[_separable]

6094

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

6095

\[ {}y^{\prime } \sin \left (x \right ) = y \ln \left (y\right ) \]
i.c.

[_separable]

6096

\[ {}x y y^{\prime }+1+y^{2} = 0 \]
i.c.

[_separable]

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

6099

\[ {}y^{\prime } y+x y^{2}-8 x = 0 \]
i.c.

[_separable]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6102

\[ {}y^{\prime }-x y = x \]
i.c.

[_separable]

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

6209

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

6217

\[ {}u \left (-v +1\right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

6237

\[ {}x y^{\prime } = x y+y \]

[_separable]

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

6241

\[ {}x y^{\prime } = y \]

[_separable]

6259

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

6262

\[ {}x y^{\prime } = \frac {1}{y^{3}} \]

[_separable]

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

6264

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

6274

\[ {}\frac {y^{\prime }}{2} = \sqrt {y+1}\, \cos \left (x \right ) \]
i.c.

[_separable]

6275

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (y+1\right )} \]
i.c.

[_separable]

6276

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

6277

\[ {}x^{2}+2 y^{\prime } y = 0 \]
i.c.

[_separable]

6278

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6280

\[ {}y^{\prime } = x^{2} \left (y+1\right ) \]
i.c.

[_separable]

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

6284

\[ {}y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (y+1\right )^{{2}/{3}} \]

[_separable]

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

[_separable]

6324

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

[_separable]

6340

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \]

[_separable]

6344

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6345

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

6406

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

6420

\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \]

[_separable]

6424

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

6426

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

[_separable]

6431

\[ {}x \left (-3+y\right ) y^{\prime } = 4 y \]

[_separable]

6432

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

6433

\[ {}x^{3}+\left (y+1\right )^{2} y^{\prime } = 0 \]

[_separable]

6434

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6435

\[ {}x^{2} \left (y+1\right )+y^{2} \left (x -1\right ) y^{\prime } = 0 \]

[_separable]

6457

\[ {}x y y^{\prime }-\left (x +1\right ) \sqrt {y-1} = 0 \]

[_separable]

6460

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6463

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right ) \]

[_separable]

6466

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

6473

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6476

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6477

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6570

\[ {}x y^{\prime } = 2 y \]

[_separable]

6571

\[ {}x +y^{\prime } y = 0 \]

[_separable]

6580

\[ {}4 y+x y^{\prime } = 0 \]

[_separable]

6581

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6582

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6583

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6589

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6590

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6594

\[ {}x y y^{\prime } = \left (y+1\right ) \left (1-x \right ) \]

[_separable]

6597

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6600

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

6602

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6633

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

6643

\[ {}y^{\prime }-y = x y \]

[_separable]

6652

\[ {}y^{\prime } y-x y^{2}+x = 0 \]

[_separable]

6667

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6668

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

[_quadrature]

7058

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

7059

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

7060

\[ {}y^{\prime } = \sin \left (x \right ) y \]

[_separable]

7061

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

7062

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

7063

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

7064

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

7066

\[ {}x y^{\prime }+y = y^{2} \]
i.c.

[_separable]

7067

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

7068

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

7070

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

7071

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

7072

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{y+1} = 0 \]

[_separable]

7073

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

[_separable]

7074

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7075

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

7076

\[ {}2 x \sqrt {1-y^{2}}+y^{\prime } y = 0 \]

[_separable]

7077

\[ {}y^{\prime } = \left (y-1\right ) \left (x +1\right ) \]

[_separable]

7078

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7079

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7080

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

7081

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

7091

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

7092

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (y+1\right ) y^{\prime } = 0 \]

[_separable]

7094

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7117

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

7152

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

7178

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

7179

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

7180

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

7188

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

7231

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

7259

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

7277

\[ {}y^{\prime }+2 x y = x \]

[_separable]

7279

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

7407

\[ {}y^{\prime } = x^{2} y \]

[_separable]

7408

\[ {}y^{\prime } y = x \]

[_separable]

7409

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

7410

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

7411

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

7450

\[ {}x y^{\prime } = 2 y \]

[_separable]

7451

\[ {}y^{\prime } y = {\mathrm e}^{2 x} \]

[_separable]

7483

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7484

\[ {}y^{\prime } = 4 x y \]

[_separable]

7485

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

7486

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

7487

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

[_separable]

7488

\[ {}x y^{\prime } = \left (-4 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

7489

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

7490

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

7491

\[ {}x y y^{\prime } = y-1 \]

[_separable]

7492

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7493

\[ {}y^{\prime } y = x +1 \]
i.c.

[_separable]

7494

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7495

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7496

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7497

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7498

\[ {}\left (y+1\right ) y^{\prime } = -x^{2}+1 \]
i.c.

[_separable]

7520

\[ {}y^{\prime }+x y = x y^{4} \]

[_separable]

7524

\[ {}x y^{\prime } = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7530

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

7531

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7534

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7540

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

7595

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7596

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

[_separable]

7599

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7600

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7603

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7604

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]
i.c.

[_separable]

7607

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7608

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

7749

\[ {}y^{\prime } = 2 x y \]

[_separable]

7761

\[ {}x y^{\prime } = y \]

[_separable]

7763

\[ {}x^{2} y^{\prime } = y \]

[_separable]

8111

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

8112

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8113

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

8114

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

[_separable]

8115

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8116

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8118

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

8120

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8121

\[ {}{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

[_separable]

8124

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

8128

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8210

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8215

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8229

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

8373

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

8374

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

8389

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

8390

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

8391

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

8392

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

8400

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

8401

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8402

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

8411

\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

[_separable]

8468

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8658

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

8666

\[ {}y^{\prime } = a x y \]

[_separable]

8726

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9699

\[ {}y^{\prime }-\left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y = 0 \]

[_separable]

9719

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

9721

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9725

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9750

\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

9751

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0 \]

[_separable]

9753

\[ {}y^{\prime }-\frac {1+y^{2}}{{| y+\sqrt {y+1}|} \left (x +1\right )^{{3}/{2}}} = 0 \]

[_separable]

9756

\[ {}y^{\prime }-\frac {\sqrt {{| y \left (y-1\right ) \left (-1+a y\right )|}}}{\sqrt {{| x \left (x -1\right ) \left (a x -1\right )|}}} = 0 \]

[_separable]

9757

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

9762

\[ {}y^{\prime }-\operatorname {R1} \left (x , \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}\right ) \operatorname {R2} \left (y, \sqrt {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}\right ) = 0 \]

[_separable]

9765

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

9786

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

9807

\[ {}x y^{\prime }-y \ln \left (y\right ) = 0 \]

[_separable]

9820

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

9824

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

9847

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0 \]

[_separable]

9848

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

9863

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

9872

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

9879

\[ {}\sqrt {x^{2}-1}\, y^{\prime }-\sqrt {y^{2}-1} = 0 \]

[_separable]

9880

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-y \sqrt {y^{2}-1} = 0 \]

[_separable]

9888

\[ {}\sin \left (2 x \right ) y^{\prime }+\sin \left (2 y\right ) = 0 \]

[_separable]

9899

\[ {}y^{\prime } y+x y^{2}-4 x = 0 \]

[_separable]

9931

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9945

\[ {}x^{2} \left (y-1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[_separable]

9997

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9998

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

10020

\[ {}\frac {y^{\prime } f_{\nu }\left (x \right ) \left (-y+y^{p +1}\right )}{y-1}-\frac {g_{\nu }\left (x \right ) \left (-y+y^{q +1}\right )}{y-1} = 0 \]

[_separable]

10024

\[ {}\sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

10036

\[ {}y^{\prime } \left (\sin \left (x \right )+1\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

10042

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

10047

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

10048

\[ {}3 y^{\prime } \sin \left (x \right ) \sin \left (y\right )+5 \cos \left (x \right )^{4} y = 0 \]

[_separable]

10084

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10126

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

10128

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

10129

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0 \]

[_separable]

10130

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

10136

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

10158

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10168

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

10192

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

10213

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10252

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

11679

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

12479

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

12480

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12481

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

12482

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

12487

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12501

\[ {}y^{\prime } y+x y^{2} = x \]

[_separable]

12502

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

12506

\[ {}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0 \]

[_separable]

12517

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12523

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

12524

\[ {}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

12528

\[ {}\left (1-x \right ) y+x \left (1-y\right ) y^{\prime } = 0 \]

[_separable]

12535

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

12541

\[ {}\left (1-x \right ) y-x \left (y+1\right ) y^{\prime } = 0 \]

[_separable]

12542

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12585

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12701

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12702

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12707

\[ {}2 x^{\prime } t = x \]

[_separable]

12728

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

[_separable]

12729

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

12730

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

[_separable]

12731

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

[_separable]

12733

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12736

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12737

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12739

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12740

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12741

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]
i.c.

[_separable]

12742

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

12743

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12744

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

12745

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

12750

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12752

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

[_separable]

12762

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

12764

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

12767

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

12770

\[ {}x^{\prime } = 2 x t \]

[_separable]

12775

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

12778

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12782

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12785

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12786

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12787

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

12929

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

12945

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

12946

\[ {}y^{\prime } = \frac {y^{2}}{-2+x} \]
i.c.

[_separable]

12955

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

12966

\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

12967

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

12968

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

12969

\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

[_separable]

12970

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

12971

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

12972

\[ {}\left (4+x \right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

12980

\[ {}y+2+y \left (4+x \right ) y^{\prime } = 0 \]
i.c.

[_separable]

12981

\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]
i.c.

[_separable]

12982

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12993

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

12994

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

12995

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

13004

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

13006

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

13007

\[ {}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{x t} \]

[_separable]

13009

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

13011

\[ {}2 x \left (y+1\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

13023

\[ {}\left (y+1\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

13027

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

13029

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13032

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

13033

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

13038

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

13039

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

13042

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

13045

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

13047

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

13395

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

13396

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

13397

\[ {}x^{\prime } = x t^{2} \]

[_separable]

13399

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

13401

\[ {}x y^{\prime } = k y \]

[_separable]

13402

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

13408

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

13421

\[ {}V^{\prime }\left (x \right )+2 y^{\prime } y = 0 \]

[_separable]

13422

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

13524

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13534

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

13538

\[ {}y = x y^{\prime }+\frac {1}{y} \]

[_separable]

13624

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

13625

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

13627

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

[_separable]

13631

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

13633

\[ {}x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

13644

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

13838

\[ {}y-x y^{\prime } = 0 \]

[_separable]

13839

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

13840

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

13841

\[ {}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

13842

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

13843

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

13844

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13845

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

13846

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

13847

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

13848

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

13849

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13850

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

13877

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

13889

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13897

\[ {}y = x y^{\prime }+y^{\prime } \]

[_separable]

13952

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13960

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13987

\[ {}-y+x y^{\prime } = 0 \]

[_separable]

13994

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

14002

\[ {}2 x y^{\prime }-y = 0 \]

[_separable]

14009

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

14012

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

14015

\[ {}y^{\prime } x \ln \left (x \right )-\left (\ln \left (x \right )+1\right ) y = 0 \]

[_separable]

14033

\[ {}y^{\prime } = x y \]

[_separable]

14034

\[ {}y^{\prime } = -x y \]

[_separable]

14038

\[ {}y^{\prime } = x y \]

[_separable]

14039

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14040

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14045

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14051

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

14055

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

14056

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

14057

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

14071

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14086

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

14087

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14088

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14090

\[ {}y^{\prime } = x +x y \]
i.c.

[_separable]

14091

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14092

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

14094

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

14100

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14105

\[ {}x -y^{\prime } y = 0 \]

[_separable]

14106

\[ {}y-x y^{\prime } = 0 \]

[_separable]

14108

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

14109

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

14110

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

14113

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14114

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14124

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14125

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14126

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14127

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14128

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14129

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14130

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14131

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14132

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14133

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14134

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14135

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14136

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14147

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14148

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14149

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14150

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14277

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

[_separable]

14278

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

14279

\[ {}y^{\prime } = t^{4} y \]

[_separable]

14284

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

14285

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14286

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

14287

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

14289

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14291

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

14292

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

14293

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

14294

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

14296

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

14298

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

14299

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

14301

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

14303

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

14305

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

14306

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

14308

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

14310

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14321

\[ {}y^{\prime } = \left (t +1\right ) y \]
i.c.

[_separable]

14331

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

14332

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

14333

\[ {}y^{\prime } = t +t y \]

[_separable]

14360

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

14362

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

14444

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

14449

\[ {}y^{\prime } = t y \]

[_separable]

14451

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

14457

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

14460

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

14463

\[ {}y^{\prime } = \frac {\left (t +1\right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

14464

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14466

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

14470

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

14471

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14659

\[ {}y^{\prime } y = 2 x \]

[_separable]

14700

\[ {}y^{\prime }+3 x y = 6 x \]

[_separable]

14703

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14706

\[ {}\left (-2+x \right ) y^{\prime } = y+3 \]

[_separable]

14707

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

14711

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14716

\[ {}y^{\prime }+x y = 4 x \]

[_separable]

14718

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

14720

\[ {}y^{\prime } y = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

14721

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14723

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14724

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14725

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

14726

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14727

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14728

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

14729

\[ {}y^{\prime } y = x y^{2}+x \]
i.c.

[_separable]

14731

\[ {}y^{\prime } = x y-4 x \]

[_separable]

14733

\[ {}y^{\prime } y = x y^{2}-9 x \]

[_separable]

14735

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

14737

\[ {}y^{\prime } = x y-4 x \]

[_separable]

14738

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

14739

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14741

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14742

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

14743

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

14744

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

14747

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14748

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

14749

\[ {}y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

[_separable]

14750

\[ {}y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

[_separable]

14753

\[ {}y^{\prime } y = \sin \left (x \right ) \]
i.c.

[_separable]

14754

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

14755

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

14756

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

14757

\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \]
i.c.

[_separable]

14758

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y \]
i.c.

[_separable]

14766

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

14772

\[ {}y^{\prime }-2 x y = x \]

[_separable]

14820

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14824

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

14826

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14830

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

[_separable]

14831

\[ {}2 x \left (y+1\right )-y^{\prime } = 0 \]

[_separable]

14836

\[ {}x y^{\prime } = 2 y^{2}-6 y \]

[_separable]

14837

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14851

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

[_separable]

14854

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

14860

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

14874

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14877

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

14879

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14881

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15467

\[ {}y^{\prime }+x y = 0 \]

[_separable]

15478

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15508

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

15518

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15541

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15543

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15545

\[ {}t y^{\prime } = y \]

[_separable]

15546

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15567

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15568

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15570

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15571

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15572

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15574

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

15575

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

15576

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

15577

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

[_separable]

15578

\[ {}y^{\prime } = \frac {2+y}{2 t +1} \]

[_separable]

15579

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15580

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15581

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

15583

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

15584

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

15585

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15586

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15587

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

15588

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

15589

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

15590

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

15592

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

15593

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

15594

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

15595

\[ {}\frac {-2+x}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

15596

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

15597

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

15598

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

15599

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15600

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15602

\[ {}4 \left (x -1\right )^{2} y^{\prime }-3 \left (y+3\right )^{2} = 0 \]

[_separable]

15603

\[ {}y^{\prime } = \sin \left (t -y\right )+\sin \left (y+t \right ) \]

[_separable]

15614

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15616

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15617

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15621

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

15622

\[ {}y^{\prime } = \frac {y+3}{3 x +1} \]
i.c.

[_separable]

15623

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15624

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15625

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15626

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15627

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15628

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15629

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15630

\[ {}y^{\prime } = -\frac {y-2}{-2+x} \]
i.c.

[_separable]

15640

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15659

\[ {}y^{\prime }-x y = x \]

[_separable]

15663

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15669

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15673

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15701

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15702

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15704

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15708

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15711

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15712

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15717

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

15721

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15729

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15741

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15742

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15762

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15766

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

15768

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

15769

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

15799

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

15813

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15814

\[ {}\cos \left (4 x \right )-8 y^{\prime } \sin \left (y\right ) = 0 \]

[_separable]

15815

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15816

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

15817

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15818

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

15819

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

15820

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

15833

\[ {}y^{\prime }+t y = t \]

[_separable]

15850

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

15851

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

15852

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

16341

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16353

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

16359

\[ {}y^{\prime } = x \left (y-1\right ) \]

[_separable]

16364

\[ {}y^{\prime } = \frac {y+1}{x -1} \]

[_separable]

16369

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

16379

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

16380

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

16381

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

16382

\[ {}1+y^{2} = x y^{\prime } \]

[_separable]

16383

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

[_separable]

16384

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

16386

\[ {}y \ln \left (y\right )+x y^{\prime } = 1 \]
i.c.

[_separable]

16387

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

16388

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

16389

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

16390

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

16391

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

16396

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

16397

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

16407

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]
i.c.

[_separable]

16408

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

16410

\[ {}\left (x +1\right ) y^{\prime } = y-1 \]

[_separable]

16411

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

16442

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

16456

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

16459

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

16464

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

16477

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

16496

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16557

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

[_separable]

16558

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16565

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

[_separable]

16574

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

16601

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[_separable]

16976

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

16977

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

16978

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

16979

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

[_separable]

16980

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

[_separable]

16981

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

16982

\[ {}y^{\prime } y = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

[_separable]

16983

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

[_separable]

16984

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

16985

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

[_separable]

16987

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

16988

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

16989

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

16990

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

16991

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

16992

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

16993

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

16994

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

16995

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

16996

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

16997

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

16998

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]
i.c.

[_separable]

16999

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

17000

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

17001

\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

17002

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17003

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

17004

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]
i.c.

[_separable]

17005

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]
i.c.

[_separable]

17006

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

17007

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

17008

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]
i.c.

[_separable]

17009

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

17010

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

17011

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]
i.c.

[_separable]

17049

\[ {}t \left (-4+t \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

17058

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

17059

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

17062

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17063

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

17065

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]
i.c.

[_separable]

17066

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

17070

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]
i.c.

[_separable]

17071

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

17074

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_separable]

17081

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

17082

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17085

\[ {}y^{3} x^{2}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

17088

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17097

\[ {}y^{\prime } y = x +1 \]

[_separable]

17098

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

[_separable]

17100

\[ {}x \left (x -1\right ) y^{\prime } = y \left (y+1\right ) \]

[_separable]

17113

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

[_separable]

17124

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

[_separable]

17125

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

17570

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]
i.c.

[_separable]

17571

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

17572

\[ {}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

17612

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

17614

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17733

\[ {}x y^{\prime } = 2 y \]

[_separable]

17734

\[ {}y^{\prime } y = {\mathrm e}^{2 x} \]

[_separable]

17754

\[ {}x y y^{\prime } = y-1 \]

[_separable]

17755

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

17756

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

17757

\[ {}y^{\prime } = 2 x y \]

[_separable]

17758

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

17760

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

17761

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

17762

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

17763

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

[_separable]

17770

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

17772

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17773

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17775

\[ {}x y y^{\prime } = \left (x +1\right ) \left (y+1\right ) \]
i.c.

[_separable]

17803

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

17804

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17806

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

17807

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

17813

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

[_separable]

17816

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17824

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17832

\[ {}y-x y^{\prime } = x y^{3} y^{\prime } \]

[_separable]

17836

\[ {}y^{2}-y+x y^{\prime } = 0 \]

[_separable]

17882

\[ {}x y^{\prime }+y = x^{2} y^{\prime }+y^{2} \]

[_separable]

17905

\[ {}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

[_separable]

18176

\[ {}3 t^{2} x-x t +\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

[_separable]

18177

\[ {}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

[_separable]

18183

\[ {}x^{\prime }+x \tan \left (t \right ) = 0 \]

[_separable]

18186

\[ {}x^{\prime }+2 x t +t x^{4} = 0 \]

[_separable]

18211

\[ {}y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \]

[_separable]

18216

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

18218

\[ {}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18220

\[ {}y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )} \]

[_separable]

18224

\[ {}\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0 \]

[_separable]

18228

\[ {}y^{\prime }+x y = x \]

[_separable]

18245

\[ {}y^{\prime } = x \left (y^{2} a +b \right ) \]

[_separable]

18246

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

18247

\[ {}v^{\prime }+\frac {2 v}{u} = 3 v \]

[_separable]

18248

\[ {}\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}} \]

[_separable]

18250

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

18252

\[ {}v^{\prime }+2 v u = 2 u \]

[_separable]

18253

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

18254

\[ {}u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1 \]

[_separable]

18303

\[ {}y^{\prime }+\sin \left (x \right ) y = y^{2} \sin \left (x \right ) \]

[_separable]

18304

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

18308

\[ {}y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0 \]

[_separable]

18309

\[ {}\left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

18310

\[ {}\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18311

\[ {}y \left (y+3\right ) y^{\prime } = x \left (3+2 y\right ) \]

[_separable]

18314

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

18403

\[ {}\left (1-x \right ) y^{\prime }-y-1 = 0 \]

[_separable]

18405

\[ {}y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

18406

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

18420

\[ {}a \left (x y^{\prime }+2 y\right ) = x y y^{\prime } \]

[_separable]

18445

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18446

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

18459

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

18465

\[ {}y^{\prime } y = a x \]

[_separable]

18470

\[ {}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18481

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0 \]

[_separable]

18497

\[ {}x y \left (y-x y^{\prime }\right ) = x +y^{\prime } y \]

[_separable]

18501

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

18515

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]