| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
29.037 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1-{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
31.457 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
14.455 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1+y^{\prime }} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
176.555 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \ln \left (y^{\prime }\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✗ |
✗ |
106.558 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.297 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \left (1+y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
2.341 |
|
| \begin{align*}
3 y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
42.658 |
|
| \begin{align*}
y^{\prime \prime \prime }+{y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.664 |
|
| \begin{align*}
y^{\prime \prime }&=2 y y^{\prime } \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.680 |
|
| \begin{align*}
3 y^{\prime } y^{\prime \prime }&=2 y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
0.620 |
|
| \begin{align*}
2 y^{\prime \prime }&=3 y^{2} \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.116 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.967 |
|
| \begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.549 |
|
| \begin{align*}
y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.228 |
|
| \begin{align*}
2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.166 |
|
| \begin{align*}
y^{3} y^{\prime \prime }&=-1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✓ |
✗ |
0.922 |
|
| \begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{2} y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.650 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{2 y} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.293 |
|
| \begin{align*}
2 y y^{\prime \prime }-3 {y^{\prime }}^{2}&=4 y^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.852 |
|
| \begin{align*}
y^{\prime \prime \prime }&=3 y y^{\prime } \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
✗ |
✓ |
✗ |
✗ |
0.046 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.476 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.906 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.076 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.398 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.044 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.009 |
|
| \begin{align*}
y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.054 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.422 |
|
| \begin{align*}
y^{\prime \prime \prime }-8 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.041 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.062 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.919 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.141 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.057 |
|
| \begin{align*}
y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.066 |
|
| \begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.043 |
|
| \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.046 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.043 |
|
| \begin{align*}
y^{\left (5\right )}&=0 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.034 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.041 |
|
| \begin{align*}
2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.045 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.059 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.037 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=\left (x -1\right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.340 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.174 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
5.478 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\left (1-x \right ) {\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
25.012 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
24.214 |
|
| \begin{align*}
4 y^{\prime \prime }-3 y^{\prime }&=x \,{\mathrm e}^{\frac {3 x}{4}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.542 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&={\mathrm e}^{4 x} x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.750 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=\cos \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
5.423 |
|
| \begin{align*}
y^{\prime \prime }+y&=-\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
24.332 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=\sin \left (4 x +\alpha \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
24.589 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\cos \left (2 x \right )+\sin \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
29.540 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
25.148 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.252 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=k \sin \left (x k +\alpha \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
25.511 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=k \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.838 |
|
| \begin{align*}
y^{\prime \prime \prime }+y&=x \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.098 |
|
| \begin{align*}
y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.092 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=2 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.085 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=3 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.082 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=1 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.094 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime }&=2 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }&=3 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.094 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }&=4 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.102 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=1 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.112 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.119 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.140 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.140 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y&=\cos \left (x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y&=\sin \left (2 x \right ) x \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y&=a \sin \left (x n +\alpha \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y&=\cos \left (x n +\alpha \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| \begin{align*}
y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.133 |
|
| \begin{align*}
y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.140 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=-2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.674 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=-2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.995 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.286 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.081 |
|
| \begin{align*}
5 y^{\prime \prime \prime }-7 y^{\prime \prime }&=3 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.090 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }&=-6 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.100 |
|
| \begin{align*}
3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }&=2 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.101 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&=1 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.104 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
24.175 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }&=8 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| \begin{align*}
y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
22.107 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=8 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
22.515 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
24.687 |
|
| \begin{align*}
7 y^{\prime \prime }-y^{\prime }&=14 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.820 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.971 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=10 \left (1-x \right ) {\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
28.060 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
24.304 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\left (x^{2}+x \right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
25.244 |
|