2.2.191 Problems 19001 to 19100

Table 2.383: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

19001

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

[[_3rd_order, _quadrature]]

0.389

19002

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

14.529

19003

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.184

19004

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.667

19005

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.157

19006

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.240

19007

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.362

19008

\[ {}a^{2} {y^{\prime \prime }}^{2} = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x]]

11.625

19009

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.613

19010

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.509

19011

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.992

19012

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.821

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.219

19014

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.758

19015

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.245

19016

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.944

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

1.299

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.176

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.156

19020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.433

19021

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.337

19022

\[ {}y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.526

19023

\[ {}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.004

19024

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.319

19025

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.062

19026

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.380

19027

\[ {}x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.059

19028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.412

19029

\[ {}y^{\prime \prime }+y^{\prime } x -y = f \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.544

19030

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.705

19031

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.813

19032

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.356

19033

\[ {}x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.151

19034

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.225

19035

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.223

19036

\[ {}\left [\begin {array}{c} x^{\prime }+2 x+y^{\prime }+y=0 \\ 5 x+y^{\prime }+3 y=0 \end {array}\right ] \]

system_of_ODEs

0.477

19037

\[ {}\left [\begin {array}{c} x^{\prime }-7 x+y=0 \\ y^{\prime }-2 x-5 y=0 \end {array}\right ] \]

system_of_ODEs

0.495

19038

\[ {}\left [\begin {array}{c} x^{\prime }+2 x-3 y=t \\ y^{\prime }-3 x+2 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.491

19039

\[ {}\left [\begin {array}{c} 4 x^{\prime }+9 y^{\prime }+44 x+49 y=t \\ 3 x^{\prime }+7 y^{\prime }+34 x+38 y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.534

19040

\[ {}\left [\begin {array}{c} x^{\prime \prime }-3 x-4 y=0 \\ y^{\prime \prime }+x+y=0 \end {array}\right ] \]

system_of_ODEs

0.052

19041

\[ {}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }-2 x+2 y=3 \,{\mathrm e}^{t} \\ 3 x^{\prime }+y^{\prime }+2 x+y=4 \,{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.515

19042

\[ {}\left [\begin {array}{c} 4 x^{\prime }+9 y^{\prime }+2 x+31 y={\mathrm e}^{t} \\ 3 x^{\prime }+7 y^{\prime }+x+24 y=3 \end {array}\right ] \]

system_of_ODEs

0.786

19043

\[ {}\left [\begin {array}{c} x^{\prime }+4 x+3 y=t \\ y^{\prime }+2 x+5 y={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.536

19044

\[ {}\left [\begin {array}{c} x^{\prime }=n y-m z \\ y^{\prime }=L z-m x \\ z^{\prime }=m x-L y \end {array}\right ] \]

system_of_ODEs

93.145

19045

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.750

19046

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.663

19047

\[ {}y+x +y^{\prime } x = 0 \]

[_linear]

2.371

19048

\[ {}y \left (1+x y\right )-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.131

19049

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right )+y^{2} = 0 \]

[_Bernoulli]

2.369

19050

\[ {}\left (x +y\right ) y^{\prime }+y-x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.580

19051

\[ {}x +y y^{\prime }+\frac {-y+y^{\prime } x}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.745

19052

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

70.332

19053

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.027

19054

\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 x y = -x^{3}+x \]

[_linear]

1.723

19055

\[ {}y^{\prime } x -y-\cos \left (\frac {1}{x}\right ) = 0 \]

[_linear]

1.505

19056

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.779

19057

\[ {}x \cos \left (y\right )^{2} = y \cos \left (x \right )^{2} y^{\prime } \]

[_separable]

3.944

19058

\[ {}y^{\prime } = {\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \]

[_separable]

1.408

19059

\[ {}x^{2} y^{\prime }+y = 1 \]

[_separable]

1.519

19060

\[ {}2 y+\left (x^{2}+1\right ) \arctan \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.003

19061

\[ {}x y^{2}+x +\left (x^{2} y+y\right ) y^{\prime } = 0 \]

[_separable]

1.980

19062

\[ {}y^{\prime } = {\mathrm e}^{x +y}+x^{2} {\mathrm e}^{y} \]

[_separable]

1.311

19063

\[ {}\left (3+2 \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime } = 1+2 \sin \left (y\right )+\cos \left (y\right ) \]

[_separable]

9.122

19064

\[ {}\frac {\cos \left (y\right )^{2} y^{\prime }}{x}+\frac {\cos \left (x \right )^{2}}{y} = 0 \]

[_separable]

3.706

19065

\[ {}\left ({\mathrm e}^{x}+1\right ) y y^{\prime } = \left (1+y\right ) {\mathrm e}^{x} \]

[_separable]

1.797

19066

\[ {}\csc \left (x \right ) \ln \left (y\right ) y^{\prime }+x^{2} y^{2} = 0 \]

[_separable]

5.914

19067

\[ {}y^{\prime } = \frac {\sin \left (x \right )+x \cos \left (x \right )}{y \left (2 \ln \left (y\right )+1\right )} \]

[_separable]

35.648

19068

\[ {}\cos \left (y\right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) = \cos \left (x \right ) \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) y^{\prime } \]

[_separable]

22.421

19069

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

1.660

19070

\[ {}\left (\sin \left (y\right )+y \cos \left (y\right )\right ) y^{\prime }-\left (2 \ln \left (x \right )+1\right ) x = 0 \]

[_separable]

34.685

19071

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

2.980

19072

\[ {}y-y^{\prime } x = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

1.211

19073

\[ {}\left (x +y-1\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.726

19074

\[ {}\left (2 x +2 y+1\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.873

19075

\[ {}\left (2 x +3 y-5\right ) y^{\prime }+2 x +3 y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.791

19076

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.885

19077

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.836

19078

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.973

19079

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.403

19080

\[ {}\left (2 x -2 y+5\right ) y^{\prime }-x +y-3 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.782

19081

\[ {}x +y+1-\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.877

19082

\[ {}y^{2} = \left (x y-x^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.162

19083

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.084

19084

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.388

19085

\[ {}x^{2} y^{\prime }+y \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.175

19086

\[ {}2 y^{\prime } = \frac {y}{x}+\frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.154

19087

\[ {}\left (6 x -5 y+4\right ) y^{\prime }+y-2 x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

53.572

19088

\[ {}\left (x -3 y+4\right ) y^{\prime }+7 y-5 x = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.147

19089

\[ {}\left (2 x +4 y+3\right ) y^{\prime } = 2 y+x +1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.806

19090

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.288

19091

\[ {}x \left (x^{2}+3 y^{2}\right )+y \left (y^{2}+3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

68.118

19092

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.276

19093

\[ {}y^{\prime } = \frac {2 x -y+1}{x +2 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.457

19094

\[ {}\left (x -y\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.385

19095

\[ {}x -y-2-\left (2 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.798

19096

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

1.769

19097

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

3.744

19098

\[ {}x \cos \left (x \right ) y^{\prime }+y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 1 \]

[_linear]

5.629

19099

\[ {}y-x \sin \left (x^{2}\right )+y^{\prime } x = 0 \]

[_linear]

1.482

19100

\[ {}x \ln \left (x \right ) y^{\prime }+y = 2 \ln \left (x \right ) \]

[_linear]

1.057