2.4.6 second order ode missing x

Table 2.385: second order ode missing x

#

ODE

CAS classification

Solved?

148

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

153

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

155

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

156

\[ {}y^{3} y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

157

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

158

\[ {}y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

233

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3180

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3181

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3193

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3195

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3197

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3198

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3200

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3201

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3204

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3206

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3207

\[ {}y^{\prime \prime } = y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3209

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

3211

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

3212

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3214

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x]]

3216

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

5555

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5556

\[ {}y^{3} y^{\prime \prime } = k \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5557

\[ {}y y^{\prime \prime } = -1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5560

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5561

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5562

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5563

\[ {}y^{\prime \prime } = 2 k y^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5564

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5565

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5566

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

5567

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5570

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5571

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

5572

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5573

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5743

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5744

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5745

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5746

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5748

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5795

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+4 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6260

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6261

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6337

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6338

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6339

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

6342

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6347

\[ {}2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6769

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6801

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

6997

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6999

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7003

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7004

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7141

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7145

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7146

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7149

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

7150

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

7169

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7171

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7307

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7728

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7729

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

7730

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7734

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

7735

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

7737

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

7741

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7742

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7752

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

7753

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7754

\[ {}\left (y y^{\prime \prime }+{y^{\prime }}^{2}+1\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7763

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7764

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8009

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8010

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8013

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8015

\[ {}3 y y^{\prime \prime }+y = 5 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8016

\[ {}a y y^{\prime \prime }+b y = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8017

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8018

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

8120

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8198

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8219

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8316

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

[[_2nd_order, _missing_x]]

8338

\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8339

\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

8340

\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8341

\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x]]

8343

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

8350

\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8351

\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10812

\[ {}y^{\prime \prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10813

\[ {}y^{\prime \prime }-6 y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10815

\[ {}y^{\prime \prime }-6 y^{2}+4 y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10818

\[ {}y^{\prime \prime }-a y^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10821

\[ {}y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10823

\[ {}y^{\prime \prime }+6 a^{10} y^{11}-y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10825

\[ {}y^{\prime \prime }-{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10828

\[ {}y^{\prime \prime }+a \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10841

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3} = 0 \]

[[_2nd_order, _missing_x]]

10853

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10854

\[ {}y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

10856

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x]]

10859

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

10861

\[ {}y^{\prime \prime }+a y {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10867

\[ {}y^{\prime \prime }+a y \left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10873

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+b y^{2}} \]

[[_2nd_order, _missing_x]]

10876

\[ {}y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10878

\[ {}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

[[_2nd_order, _missing_x]]

10915

\[ {}y y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10918

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10920

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10921

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10922

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10924

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10928

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10935

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10936

\[ {}y y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10937

\[ {}y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10938

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

10941

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

[[_2nd_order, _missing_x]]

10943

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x]]

10948

\[ {}2 y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10949

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10951

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

10952

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x]]

10954

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

10957

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0 \]

[[_2nd_order, _missing_x]]

10961

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10962

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10964

\[ {}2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+\left (1+a y^{3}\right ) y^{2} = 0 \]

[[_2nd_order, _missing_x]]

10965

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10966

\[ {}2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

10968

\[ {}3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10969

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _missing_x]]

10970

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

10971

\[ {}4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0 \]

[[_2nd_order, _missing_x]]

10973

\[ {}4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

10974

\[ {}12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0 \]

[[_2nd_order, _missing_x]]

10975

\[ {}n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10979

\[ {}\left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

10999

\[ {}y^{2} y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11002

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+\left (1-2 y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11003

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11014

\[ {}a y \left (-1+y\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (-1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11015

\[ {}a b y \left (-1+y\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (1-a \right ) b \right ) {y^{\prime }}^{2}+f y \left (-1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11020

\[ {}y^{3} y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11021

\[ {}y \left (1+y^{2}\right ) y^{\prime \prime }+\left (1-3 y^{2}\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11024

\[ {}2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0 \]

[[_2nd_order, _missing_x]]

11025

\[ {}\left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11026

\[ {}\left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11029

\[ {}\left (-1+y^{2}\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11031

\[ {}\sqrt {y}\, y^{\prime \prime }-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

11033

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11034

\[ {}\left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0 \]

[[_2nd_order, _missing_x]]

11043

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime }+y^{3} = 0 \]

[[_2nd_order, _missing_x]]

11054

\[ {}\left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x]]

12215

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

12216

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

12217

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

12218

\[ {}y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12236

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

12239

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13068

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13071

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13079

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13083

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

13104

\[ {}y^{\prime \prime } = 2 y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13105

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13140

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13171

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13391

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13393

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

13437

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13466

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

13467

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

13470

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

13651

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14379

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14382

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14384

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14390

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14391

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14392

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14394

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14395

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14400

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14401

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14402

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14413

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14414

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14415

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

14420

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14421

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14422

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14423

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14430

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

15567

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16076

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16101

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16102

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16103

\[ {}3 y^{\prime \prime } y^{\prime } = 2 y \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16104

\[ {}2 y^{\prime \prime } = 3 y^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16105

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16106

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16107

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16108

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16109

\[ {}y^{3} y^{\prime \prime } = -1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16110

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

16111

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16112

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

16335

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

[[_2nd_order, _missing_x]]

16337

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

16339

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16340

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

16346

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]