2.2.193 Problems 19201 to 19300

Table 2.387: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

19201

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.369

19202

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.945

19203

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.951

19204

\[ {}y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

1.694

19205

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256 \]

[[_high_order, _with_linear_symmetries]]

0.188

19206

\[ {}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.928

19207

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.076

19208

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

[[_high_order, _missing_x]]

0.089

19209

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13.924

19210

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 24 x \cos \left (x \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

0.978

19211

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

1.387

19212

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

1.420

19213

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

1.396

19214

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2} = 0 \]

[_quadrature]

0.895

19215

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

[_separable]

1.050

19216

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0 \]

[_quadrature]

0.345

19217

\[ {}y^{\prime } \left (y^{\prime }-y\right ) = \left (x +y\right ) x \]

[_quadrature]

1.605

19218

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

[_quadrature]

4.066

19219

\[ {}x +y {y^{\prime }}^{2} = y^{\prime } \left (1+x y\right ) \]

[_quadrature]

2.072

19220

\[ {}x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y = 0 \]

[_quadrature]

2.737

19221

\[ {}{y^{\prime }}^{3}-a \,x^{4} = 0 \]

[_quadrature]

0.323

19222

\[ {}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0 \]

[_quadrature]

1.734

19223

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+x y+y^{2}\right )+x y \left (x +y\right ) = 0 \]

[_quadrature]

2.717

19224

\[ {}\left (y^{\prime }+y+x \right ) \left (y+x +y^{\prime } x \right ) \left (y^{\prime }+2 x \right ) = 0 \]

[_quadrature]

3.776

19225

\[ {}x^{2} {y^{\prime }}^{3}+y \left (1+x^{2} y\right ) {y^{\prime }}^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

12.233

19226

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

4.217

19227

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

2.266

19228

\[ {}{y^{\prime }}^{2} \left (2-3 y\right )^{2} = 4-4 y \]

[_quadrature]

0.453

19229

\[ {}y = 3 x +a \ln \left (y^{\prime }\right ) \]

[_separable]

7.671

19230

\[ {}{y^{\prime }}^{2}-y y^{\prime }+x = 0 \]

[_dAlembert]

1.289

19231

\[ {}y = x +a \arctan \left (y^{\prime }\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

21.378

19232

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

0.483

19233

\[ {}y = x {y^{\prime }}^{2}+y^{\prime } \]

[_rational, _dAlembert]

0.875

19234

\[ {}x {y^{\prime }}^{2}+a x = 2 y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.432

19235

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

0.965

19236

\[ {}y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \]

[_quadrature]

2.019

19237

\[ {}y = \sin \left (x \right ) y^{\prime }+\cos \left (x \right ) \]

[_linear]

1.952

19238

\[ {}y = y^{\prime } \tan \left (y^{\prime }\right )+\ln \left (\cos \left (y^{\prime }\right )\right ) \]

[_dAlembert]

1.872

19239

\[ {}x = y y^{\prime }-{y^{\prime }}^{2} \]

[_dAlembert]

1.297

19240

\[ {}\left (2 x -b \right ) y^{\prime } = y-a y {y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.891

19241

\[ {}x = y+a \ln \left (y^{\prime }\right ) \]

[_separable]

5.346

19242

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.887

19243

\[ {}x \left ({y^{\prime }}^{2}+1\right ) = 1 \]

[_quadrature]

0.273

19244

\[ {}x^{2} = a^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

0.332

19245

\[ {}y = y^{\prime } x +\frac {a}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.440

19246

\[ {}y = y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.492

19247

\[ {}y = y^{\prime } x +a y^{\prime } \left (1-y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.477

19248

\[ {}y = y^{\prime } x +\sqrt {{y^{\prime }}^{2}+1} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.375

19249

\[ {}y = y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.039

19250

\[ {}\left (y-y^{\prime } x \right ) \left (y^{\prime }-1\right ) = y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.531

19251

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.364

19252

\[ {}y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.514

19253

\[ {}y = y^{\prime } x +{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.451

19254

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.721

19255

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.054

19256

\[ {}x +\frac {y^{\prime }}{\sqrt {{y^{\prime }}^{2}+1}} = a \]

[_quadrature]

0.515

19257

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.963

19258

\[ {}y = y^{\prime } x +x \sqrt {{y^{\prime }}^{2}+1} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

35.171

19259

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.986

19260

\[ {}y = \frac {2 a {y^{\prime }}^{2}}{\left ({y^{\prime }}^{2}+1\right )^{2}} \]

[_quadrature]

2.860

19261

\[ {}\left (-y+y^{\prime } x \right )^{2} = a \left ({y^{\prime }}^{2}+1\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries]]

45.410

19262

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime } = y^{4} \]

[[_homogeneous, ‘class G‘]]

13.656

19263

\[ {}2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (x \cos \left (x \right )-4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+x \sin \left (2 x \right ) = 0 \]

[_quadrature]

0.823

19264

\[ {}\left (-y+y^{\prime } x \right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10.983

19265

\[ {}y-y^{\prime } x = x +y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.665

19266

\[ {}a^{2} y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.568

19267

\[ {}x^{2} \left (y-y^{\prime } x \right ) = y {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries]]

3.032

19268

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13.385

19269

\[ {}{y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }+y^{2}+a^{4} = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.634

19270

\[ {}x +y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

50.253

19271

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

5.503

19272

\[ {}2 y = y^{\prime } x +\frac {a}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.572

19273

\[ {}y = a y^{\prime }+\sqrt {{y^{\prime }}^{2}+1} \]

[_quadrature]

1.633

19274

\[ {}\left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0 \]

[_rational]

171.082

19275

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.587

19276

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]

3.785

19277

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

[_exact, _rational]

1.556

19278

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = 1 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.571

19279

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.087

19280

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = \left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.073

19281

\[ {}\left (-y+y^{\prime } x \right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

[_rational]

117.046

19282

\[ {}x^{2} y^{2}-3 x y y^{\prime } = 2 y^{2}+x^{3} \]

[_rational, _Bernoulli]

3.310

19283

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.451

19284

\[ {}y^{2}-2 x y y^{\prime }+\left (x^{2}-1\right ) {y^{\prime }}^{2} = m \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.514

19285

\[ {}y = y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.322

19286

\[ {}4 {y^{\prime }}^{2} = 9 x \]

[_quadrature]

0.261

19287

\[ {}4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

[_quadrature]

0.280

19288

\[ {}\left (8 {y^{\prime }}^{3}-27\right ) x = \frac {12 {y^{\prime }}^{2}}{x} \]

[_quadrature]

0.586

19289

\[ {}3 y = 2 y^{\prime } x -\frac {2 {y^{\prime }}^{2}}{x} \]

[[_homogeneous, ‘class G‘]]

2.642

19290

\[ {}y^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

0.548

19291

\[ {}{y^{\prime }}^{2} \left (2-3 y\right )^{2} = 4-4 y \]

[_quadrature]

0.455

19292

\[ {}4 x {y^{\prime }}^{2} = \left (3 x -1\right )^{2} \]

[_quadrature]

0.273

19293

\[ {}x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

[_quadrature]

0.282

19294

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.832

19295

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.298

19296

\[ {}{y^{\prime }}^{2}+2 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.264

19297

\[ {}y^{2} \left (y-y^{\prime } x \right ) = x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

3.374

19298

\[ {}{y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }-x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

26.601

19299

\[ {}{y^{\prime }}^{4} = 4 y \left (y^{\prime } x -2 y\right )^{2} \]

[[_homogeneous, ‘class G‘]]

0.618

19300

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

0.579