2.3.9 first order ode bernoulli

Table 2.391: first order ode bernoulli

#

ODE

CAS classification

Solved?

27

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

33

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

34

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y^{\prime } y = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

61

\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

113

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

123

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

126

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

127

\[ {}x y^{\prime }+6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

128

\[ {}2 x y^{\prime }+y^{3} {\mathrm e}^{-2 x} = 2 x y \]

[_Bernoulli]

129

\[ {}y^{2} \left (y+x y^{\prime }\right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

160

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) y^{n} \]

[_Bernoulli]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

186

\[ {}x^{2} y^{\prime }+2 x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

187

\[ {}x y^{\prime }+2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

189

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

192

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

196

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

197

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

200

\[ {}x y^{\prime } = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

202

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

205

\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

210

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

669

\[ {}y^{\prime } = 2 x^{2} y^{2} \]
i.c.

[_separable]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

673

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

674

\[ {}y^{\prime } y = x -1 \]
i.c.

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y^{\prime } y = x \left (1+y^{2}\right ) \]

[_separable]

696

\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 x^{2} y^{2} \]
i.c.

[_separable]

730

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

737

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

747

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

750

\[ {}x^{2} y^{\prime }+2 x y = 5 y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

751

\[ {}x y^{\prime }+6 y = 3 x y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

752

\[ {}2 x y^{\prime }+y^{3} {\mathrm e}^{-2 x} = 2 x y \]

[_Bernoulli]

753

\[ {}y^{2} \left (y+x y^{\prime }\right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

778

\[ {}x^{2} y^{\prime }+2 x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

779

\[ {}x y^{\prime }+2 y = 6 x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

781

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

784

\[ {}x^{3} y^{\prime } = x^{2} y-y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

788

\[ {}2 x^{2} y-x^{3} y^{\prime } = y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

789

\[ {}3 x^{5} y^{2}+x^{3} y^{\prime } = 2 y^{2} \]

[_separable]

792

\[ {}x y^{\prime } = 6 y+12 x^{4} y^{{2}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

794

\[ {}9 x^{2} y^{2}+x^{{3}/{2}} y^{\prime } = y^{2} \]

[_separable]

797

\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

802

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1137

\[ {}y^{\prime } = \left (-2 x +1\right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {-2 x +1}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]

[_separable]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1177

\[ {}y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

[_separable]

1178

\[ {}y^{\prime } = t \left (3-y\right ) y \]

[_separable]

1179

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

1180

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1204

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (y+1\right )}{x} \]
i.c.

[_separable]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1580

\[ {}x y^{\prime }+y^{2}+y = 0 \]

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1597

\[ {}x +y^{\prime } y = 0 \]
i.c.

[_separable]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1625

\[ {}y^{\prime }-y = x y^{2} \]

[_Bernoulli]

1629

\[ {}y^{\prime }+y = y^{2} \]

[_quadrature]

1630

\[ {}7 x y^{\prime }-2 y = -\frac {x^{2}}{y^{6}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1631

\[ {}x^{2} y^{\prime }+2 y = 2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \]

[_Bernoulli]

1632

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \frac {1}{\left (x^{2}+1\right ) y} \]

[_rational, _Bernoulli]

1633

\[ {}y^{\prime }-x y = x^{3} y^{3} \]

[_Bernoulli]

1634

\[ {}y^{\prime }-\frac {\left (x +1\right ) y}{3 x} = y^{4} \]

[_rational, _Bernoulli]

1635

\[ {}y^{\prime }-2 y = x y^{3} \]
i.c.

[_Bernoulli]

1636

\[ {}y^{\prime }-x y = x y^{{3}/{2}} \]
i.c.

[_separable]

1637

\[ {}y+x y^{\prime } = x^{4} y^{4} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1639

\[ {}y^{\prime }-4 y = \frac {48 x}{y^{2}} \]
i.c.

[_rational, _Bernoulli]

1640

\[ {}x^{2} y^{\prime }+2 x y = y^{3} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1641

\[ {}y^{\prime }-y = x \sqrt {y} \]
i.c.

[_Bernoulli]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1649

\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1692

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1703

\[ {}{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

[_exact, _Bernoulli]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1712

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]

[_separable]

1736

\[ {}3 x^{2} y^{2}+2 y+2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2358

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2533

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]
i.c.

[_Bernoulli]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2541

\[ {}y^{\prime } = {\mathrm e}^{t} y^{2}-2 y \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2542

\[ {}y^{\prime } = t y^{3}-y \]
i.c.

[_Bernoulli]

2809

\[ {}x^{\prime } = x \left (-x+1\right ) \]

[_quadrature]

2810

\[ {}x^{\prime } = -x \left (-x+1\right ) \]

[_quadrature]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2853

\[ {}y+x y^{\prime } = y^{2} \]

[_separable]

2860

\[ {}y^{2}+y^{\prime } y+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2864

\[ {}y^{2}+x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2878

\[ {}y^{2}+x^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2885

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2940

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2941

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2943

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2948

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2951

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2952

\[ {}y \left (1-x^{4} y^{2}\right )+x y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2982

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_Bernoulli]

2983

\[ {}y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

[_Bernoulli]

2986

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2987

\[ {}y^{\prime }-x y = \sqrt {y}\, x \,{\mathrm e}^{x^{2}} \]

[_Bernoulli]

2988

\[ {}x^{\prime } t +x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2989

\[ {}y^{2}+x^{2} y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2991

\[ {}y^{\prime }-x y = \frac {x}{y} \]

[_separable]

2992

\[ {}y+x y^{\prime } = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2993

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2994

\[ {}x y^{\prime }+2 y = 3 x^{3} y^{{4}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2995

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

2998

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right ) \]

[_Bernoulli]

2999

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{-t} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

3015

\[ {}y-x y^{\prime } = 2 y^{\prime }+2 y^{2} \]

[_separable]

3022

\[ {}2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

3028

\[ {}-6+3 x = x y y^{\prime } \]

[_separable]

3030

\[ {}2 x y^{\prime }-y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3031

\[ {}x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

[_separable]

3039

\[ {}x y^{\prime }-5 y-x \sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3041

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3044

\[ {}x y^{\prime }-2 y-2 x^{4} y^{3} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3047

\[ {}y+x y^{\prime } = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3048

\[ {}x^{\prime } = x+x^{2} {\mathrm e}^{\theta } \]
i.c.

[[_1st_order, _with_linear_symmetries], _Bernoulli]

3049

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3052

\[ {}4 x y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3057

\[ {}2 \left (x^{2}+1\right ) y^{\prime } = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3294

\[ {}{y^{\prime }}^{2} y+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right ) = 0 \]

[_quadrature]

3410

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

3426

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3433

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3457

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3459

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3466

\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \]

[_rational, _Bernoulli]

3473

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3480

\[ {}x y^{\prime }+y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3516

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3529

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3581

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]
i.c.

[_Bernoulli]

3594

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3657

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

3658

\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \]

[_Bernoulli]

3659

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \]

[_Bernoulli]

3660

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]

[_Bernoulli]

3661

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3662

\[ {}2 x \left (y^{\prime }+y^{3} x^{2}\right )+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3663

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (b -a \right ) y \]

[_rational, _Bernoulli]

3664

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \]

[_Bernoulli]

3665

\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \]

[_Bernoulli]

3666

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]

[_Bernoulli]

3667

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3668

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3670

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]
i.c.

[_rational, _Bernoulli]

3671

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \]
i.c.

[_Bernoulli]

4094

\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \]

[_separable]

4096

\[ {}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0 \]

[_separable]

4098

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4190

\[ {}y^{\prime } y = x \]

[_separable]

4213

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

4214

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

4223

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]
i.c.

[_separable]

4231

\[ {}x y^{\prime } = 2 y \left (y-1\right ) \]
i.c.

[_separable]

4237

\[ {}{\mathrm e}^{2 x} y y^{\prime }+2 x = 0 \]
i.c.

[_separable]

4240

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4241

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4242

\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4305

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4311

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4342

\[ {}2+y^{2}+2 x +2 y^{\prime } y = 0 \]

[_rational, _Bernoulli]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

[_separable]

4375

\[ {}3 x y^{\prime }-3 x y^{4} \ln \left (x \right )-y = 0 \]

[_Bernoulli]

4377

\[ {}y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

[_rational, _Bernoulli]

4378

\[ {}\left (x +1\right ) \left (y^{\prime }+y^{2}\right )-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4379

\[ {}x y y^{\prime }+y^{2}-\sin \left (x \right ) = 0 \]

[_Bernoulli]

4380

\[ {}2 x^{3}-y^{4}+x y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4381

\[ {}y^{\prime }-y \tan \left (x \right )+y^{2} \cos \left (x \right ) = 0 \]

[_Bernoulli]

4396

\[ {}x y^{2} \left (y+x y^{\prime }\right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4400

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

4411

\[ {}{\mathrm e}^{x}+3 y^{2}+2 x y y^{\prime } = 0 \]

[_Bernoulli]

4421

\[ {}2 x^{3} y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4423

\[ {}x^{2} \left (-y+x y^{\prime }\right ) = \left (x +y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4430

\[ {}2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4438

\[ {}y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

[_rational, _Bernoulli]

4443

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4671

\[ {}y^{\prime } = x y \left (y+3\right ) \]

[_separable]

4675

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4678

\[ {}y^{\prime } = \left (a +b y \cos \left (k x \right )\right ) y \]

[_Bernoulli]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4690

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4691

\[ {}y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[_Bernoulli]

4693

\[ {}y^{\prime }+2 x y \left (1+a x y^{2}\right ) = 0 \]

[_Bernoulli]

4694

\[ {}y^{\prime }+\left (\tan \left (x \right )+y^{2} \sec \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4695

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4698

\[ {}y^{\prime } = f \left (x \right ) y+g \left (x \right ) y^{k} \]

[_Bernoulli]

4704

\[ {}y^{\prime }+2 y \left (1-x \sqrt {y}\right ) = 0 \]

[_Bernoulli]

4772

\[ {}x y^{\prime }+\left (1-x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4773

\[ {}x y^{\prime } = \left (1-x y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4774

\[ {}x y^{\prime } = \left (x y+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4775

\[ {}x y^{\prime } = a \,x^{3} \left (1-x y\right ) y \]

[_Bernoulli]

4777

\[ {}x y^{\prime } = y \left (1+2 x y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4782

\[ {}x y^{\prime }+\left (a +b \,x^{n} y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4785

\[ {}x y^{\prime }+\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4787

\[ {}x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

4788

\[ {}x y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4789

\[ {}y+x y^{\prime } = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4790

\[ {}x y^{\prime } = a y+b \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4791

\[ {}x y^{\prime }+2 y = a \,x^{2 k} y^{k} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4792

\[ {}x y^{\prime } = 4 y-4 \sqrt {y} \]

[_separable]

4824

\[ {}\left (x +1\right ) y^{\prime } = a y+b x y^{2} \]

[_rational, _Bernoulli]

4825

\[ {}\left (x +1\right ) y^{\prime }+y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4826

\[ {}\left (x +1\right ) y^{\prime } = \left (1-x y^{3}\right ) y \]

[_rational, _Bernoulli]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4835

\[ {}\left (-x +a \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

[_rational, _Bernoulli]

4838

\[ {}2 x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

4839

\[ {}2 x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

[_separable]

4840

\[ {}2 x y^{\prime } = \left (1+x -6 y^{2}\right ) y \]

[_rational, _Bernoulli]

4845

\[ {}2 \left (x +1\right ) y^{\prime }+2 y+\left (x +1\right )^{4} y^{3} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

4847

\[ {}3 x y^{\prime } = \left (2+x y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4848

\[ {}3 x y^{\prime } = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

[_Bernoulli]

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4861

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4870

\[ {}x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4871

\[ {}x^{2} y^{\prime } = 2 y \left (x -y^{2}\right ) \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4874

\[ {}x^{2} y^{\prime } = \left (a x +b y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4875

\[ {}x^{2} y^{\prime }+x y+\sqrt {y} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

[_separable]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4904

\[ {}\left (-x^{2}+4\right ) y^{\prime }+4 y = \left (x +2\right ) y^{2} \]

[_rational, _Bernoulli]

4907

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+\left (x -y\right ) y = 0 \]

[_rational, _Bernoulli]

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

4919

\[ {}x \left (x +a \right ) y^{\prime } = \left (b +c y\right ) y \]

[_separable]

4924

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = c y^{2} \]

[_separable]

4946

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4948

\[ {}x^{3} y^{\prime } = \left (x +1\right ) y^{2} \]

[_separable]

4951

\[ {}x^{3} y^{\prime } = \left (2 x^{2}+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4964

\[ {}x^{2} \left (1-x \right ) y^{\prime } = \left (2-x \right ) x y-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4965

\[ {}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+y^{2} a \right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4967

\[ {}6 x^{3} y^{\prime } = 4 x^{2} y+\left (1-3 x \right ) y^{4} \]

[_rational, _Bernoulli]

4969

\[ {}x^{4} y^{\prime } = \left (x^{3}+y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4975

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime } = \left (x -3 x^{3} y\right ) y \]

[_rational, _Bernoulli]

5008

\[ {}y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right ) = y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \]

[_Bernoulli]

5015

\[ {}x +y^{\prime } y = 0 \]

[_separable]

5016

\[ {}y^{\prime } y+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

5021

\[ {}y^{\prime } y+4 x \left (x +1\right )+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5022

\[ {}y^{\prime } y = a x +b y^{2} \]

[_rational, _Bernoulli]

5023

\[ {}y^{\prime } y = b \cos \left (x +c \right )+y^{2} a \]

[_Bernoulli]

5025

\[ {}y^{\prime } y = a x +b x y^{2} \]

[_separable]

5026

\[ {}y^{\prime } y = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \]

[_Bernoulli]

5058

\[ {}2 y^{\prime } y+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5059

\[ {}2 y^{\prime } y = x y^{2}+x^{3} \]

[_rational, _Bernoulli]

5101

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

5102

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5103

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5104

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5105

\[ {}x y y^{\prime } = a \,x^{3} \cos \left (x \right )+y^{2} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

5108

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

5109

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5110

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

5135

\[ {}2 x y y^{\prime }+1-2 x^{3}-y^{2} = 0 \]

[_rational, _Bernoulli]

5136

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

5137

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5138

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5139

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5140

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

5141

\[ {}2 x y y^{\prime }+x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

[_rational, _Bernoulli]

5149

\[ {}2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

[_exact, _rational, _Bernoulli]

5154

\[ {}a x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5167

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

5168

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

[_rational, _Bernoulli]

5169

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5174

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5175

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5178

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5182

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

5183

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5217

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

[_rational, _Bernoulli]

5244

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5249

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5253

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5409

\[ {}{y^{\prime }}^{2}-x y \left (y^{2}+x^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5527

\[ {}{y^{\prime }}^{2} y+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

5529

\[ {}{y^{\prime }}^{2} y-\left (x y+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5530

\[ {}{y^{\prime }}^{2} y+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5539

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

[_separable]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5579

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (y^{2}+x^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5615

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5693

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

[_Bernoulli]

5695

\[ {}y+x y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5718

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

5719

\[ {}z^{\prime }+2 x z = 2 a \,x^{3} z^{3} \]

[_Bernoulli]

5720

\[ {}z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

5721

\[ {}y+x y^{\prime } = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5781

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5841

\[ {}y+x y^{\prime } = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5845

\[ {}y^{\prime }+y = x y^{3} \]

[_Bernoulli]

5846

\[ {}\left (-x^{3}+1\right ) y^{\prime }-2 \left (x +1\right ) y = y^{{5}/{2}} \]

[_rational, _Bernoulli]

5855

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5856

\[ {}x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

5857

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (-2+x \right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5859

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]
i.c.

[_separable]

5860

\[ {}2 \cos \left (x \right ) y^{\prime } = y \sin \left (x \right )-y^{3} \]
i.c.

[_Bernoulli]

5866

\[ {}2 x y y^{\prime }+\left (x +1\right ) y^{2} = {\mathrm e}^{x} \]

[_Bernoulli]

5876

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5879

\[ {}y+x y^{\prime } = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5883

\[ {}y^{\prime }+8 x^{3} y^{3}+2 x y = 0 \]

[_Bernoulli]

5891

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5899

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

[_separable]

5906

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5911

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

6032

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

6096

\[ {}x y y^{\prime }+1+y^{2} = 0 \]
i.c.

[_separable]

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

6099

\[ {}y^{\prime } y+x y^{2}-8 x = 0 \]
i.c.

[_separable]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6119

\[ {}y^{\prime }+y = x y^{{2}/{3}} \]

[_Bernoulli]

6120

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6214

\[ {}3 x^{3} y^{2} y^{\prime }-y^{3} x^{2} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6216

\[ {}y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x} = 0 \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

6262

\[ {}x y^{\prime } = \frac {1}{y^{3}} \]

[_separable]

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

6277

\[ {}x^{2}+2 y^{\prime } y = 0 \]
i.c.

[_separable]

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6318

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

6344

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6345

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

6406

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

6407

\[ {}3 x y^{\prime }+y+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6429

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6430

\[ {}x y^{\prime }+3 y = x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6438

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6451

\[ {}y^{\prime }+y = x y^{3} \]

[_Bernoulli]

6452

\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6453

\[ {}2 y^{\prime }+y = y^{3} \left (x -1\right ) \]

[_Bernoulli]

6454

\[ {}y^{\prime }-2 y \tan \left (x \right ) = y^{2} \tan \left (x \right )^{2} \]

[_Bernoulli]

6455

\[ {}y^{\prime }+y \tan \left (x \right ) = y^{3} \sec \left (x \right )^{4} \]

[_Bernoulli]

6459

\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \]
i.c.

[_Bernoulli]

6469

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6476

\[ {}x \left (1+y^{2}\right )-\left (x^{2}+1\right ) y y^{\prime } = 0 \]

[_separable]

6477

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6479

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6571

\[ {}x +y^{\prime } y = 0 \]

[_separable]

6573

\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6582

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6595

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6598

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6601

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6603

\[ {}y^{2}+x y-x y^{\prime } = 0 \]
i.c.

[_rational, _Bernoulli]

6616

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6618

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6646

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6649

\[ {}x y^{\prime }+y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6652

\[ {}y^{\prime } y-x y^{2}+x = 0 \]

[_separable]

6654

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

6658

\[ {}2 y^{5} x -y+2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6664

\[ {}x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

7058

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

7059

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

7064

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

7065

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

7066

\[ {}y+x y^{\prime } = y^{2} \]
i.c.

[_separable]

7067

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

7068

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

7071

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

7072

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{y+1} = 0 \]

[_separable]

7074

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7079

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7080

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

7095

\[ {}2 x y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[_rational, _Bernoulli]

7111

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7136

\[ {}2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7185

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7187

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7226

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

7236

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7237

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7408

\[ {}y^{\prime } y = x \]

[_separable]

7412

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

7413

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7414

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7451

\[ {}y^{\prime } y = {\mathrm e}^{2 x} \]

[_separable]

7458

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7483

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7492

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7493

\[ {}y^{\prime } y = x +1 \]
i.c.

[_separable]

7495

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7496

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7497

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

7517

\[ {}y+x y^{\prime } = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7518

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

7519

\[ {}y+x y^{\prime } = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7520

\[ {}y^{\prime }+x y = x y^{4} \]

[_separable]

7547

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7548

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7555

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7556

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7562

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7563

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7603

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

8120

\[ {}{y^{\prime }}^{2} y+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8121

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

8124

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

8127

\[ {}x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8129

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8215

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8378

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8408

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (-2 x +1\right ) y^{4}}{3} \]

[_Bernoulli]

8421

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

8422

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

8434

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8470

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8474

\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]
i.c.

[_Bernoulli]

8565

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

8628

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8683

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

8847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

9719

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

9724

\[ {}y^{\prime }+f \left (x \right ) y^{2}+g \left (x \right ) y = 0 \]

[_Bernoulli]

9734

\[ {}y^{\prime }+2 a \,x^{3} y^{3}+2 x y = 0 \]

[_Bernoulli]

9791

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9798

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

9799

\[ {}x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

9818

\[ {}\left (x +1\right ) y^{\prime }+\left (y-x \right ) y = 0 \]

[_rational, _Bernoulli]

9821

\[ {}3 x y^{\prime }-3 x \ln \left (x \right ) y^{4}-y = 0 \]

[_Bernoulli]

9826

\[ {}x^{2} y^{\prime }-y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9845

\[ {}\left (x^{2}-1\right ) y^{\prime }-\left (y-x \right ) y = 0 \]

[_rational, _Bernoulli]

9847

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0 \]

[_separable]

9849

\[ {}\left (x^{2}-4\right ) y^{\prime }+\left (x +2\right ) y^{2}-4 y = 0 \]

[_rational, _Bernoulli]

9860

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9866

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (-2+x \right ) y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9886

\[ {}\cos \left (x \right ) y^{\prime }-y^{4}-y \sin \left (x \right ) = 0 \]

[_Bernoulli]

9896

\[ {}y^{\prime } y+4 x \left (x +1\right )+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9897

\[ {}y^{\prime } y+y^{2} a -b \cos \left (x +c \right ) = 0 \]

[_Bernoulli]

9899

\[ {}y^{\prime } y+x y^{2}-4 x = 0 \]

[_separable]

9909

\[ {}2 y^{\prime } y-x y^{2}-x^{3} = 0 \]

[_rational, _Bernoulli]

9919

\[ {}a y y^{\prime }+b y^{2}+f \left (x \right ) = 0 \]

[_Bernoulli]

9921

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9922

\[ {}x y y^{\prime }-y^{2}+a \,x^{3} \cos \left (x \right ) = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

9929

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9930

\[ {}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9931

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9947

\[ {}2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9948

\[ {}2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_Bernoulli]

9952

\[ {}2 x^{3}+y^{\prime } y+3 x^{2} y^{2}+7 = 0 \]

[_rational, _Bernoulli]

9956

\[ {}y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1 = 0 \]

[_exact, _Bernoulli]

9957

\[ {}f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[_Bernoulli]

9987

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9989

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9997

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

10003

\[ {}x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right ) = 0 \]

[_Bernoulli]

10084

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10132

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10158

\[ {}{y^{\prime }}^{2} y-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10168

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

10192

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

10213

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10370

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (x \left (x +1\right )\right ) y x^{4}-\ln \left (x \left (x +1\right )\right ) x^{3}\right )}{x} \]

[_Bernoulli]

10390

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \]

[_Bernoulli]

10401

\[ {}y^{\prime } = -\frac {y \left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}+y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x} \]

[_Bernoulli]

10406

\[ {}y^{\prime } = \frac {y \left (-{\mathrm e}^{x}+\ln \left (2 x \right ) x^{2} y-\ln \left (2 x \right ) x \right ) {\mathrm e}^{-x}}{x} \]

[_Bernoulli]

10434

\[ {}y^{\prime } = -\frac {y \left (\tan \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tan \left (x \right )} \]

[_Bernoulli]

10452

\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \]

[_Bernoulli]

10453

\[ {}y^{\prime } = \frac {y \left (-\ln \left (x \right )-x \ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x^{2} y\right )}{x \ln \left (x \right )} \]

[_Bernoulli]

10463

\[ {}y^{\prime } = \frac {y \left (-\ln \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \ln \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10469

\[ {}y^{\prime } = \frac {y \left (-\tanh \left (\frac {1}{x}\right )-\ln \left (\frac {x^{2}+1}{x}\right ) x +\ln \left (\frac {x^{2}+1}{x}\right ) x^{2} y\right )}{x \tanh \left (\frac {1}{x}\right )} \]

[_Bernoulli]

10470

\[ {}y^{\prime } = -\frac {y \left (\tanh \left (x \right )+\ln \left (2 x \right ) x -\ln \left (2 x \right ) x^{2} y\right )}{x \tanh \left (x \right )} \]

[_Bernoulli]

10475

\[ {}y^{\prime } = -\frac {y \left (\ln \left (x -1\right )+\coth \left (x +1\right ) x -\coth \left (x +1\right ) x^{2} y\right )}{x \ln \left (x -1\right )} \]

[_Bernoulli]

10479

\[ {}y^{\prime } = \frac {y \left (-\cosh \left (\frac {1}{x +1}\right ) x +\cosh \left (\frac {1}{x +1}\right )-x +x^{2} y-x^{2}+x^{3} y\right )}{x \left (x -1\right ) \cosh \left (\frac {1}{x +1}\right )} \]

[_Bernoulli]

10484

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10486

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-{\mathrm e}^{\frac {x +1}{x -1}} x^{2}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

11681

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{n} \left (x \right ) y^{n} \]

[_Bernoulli]

12480

\[ {}\left (x +1\right ) y^{2}-x^{3} y^{\prime } = 0 \]

[_separable]

12485

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12486

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12487

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12500

\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 \left (x +1\right ) y = y^{{5}/{2}} \]

[_rational, _Bernoulli]

12501

\[ {}y^{\prime } y+x y^{2} = x \]

[_separable]

12503

\[ {}4 x y^{\prime }+3 y+{\mathrm e}^{x} x^{4} y^{5} = 0 \]

[_Bernoulli]

12508

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12511

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12512

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12527

\[ {}x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

[_Bernoulli]

12535

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

12540

\[ {}y+x y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12549

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

12557

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12702

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12703

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12710

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

12720

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12732

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

12733

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12736

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12738

\[ {}x^{\prime } = x \left (x+4\right ) \]
i.c.

[_quadrature]

12743

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12746

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12749

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12750

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12776

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12777

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

12778

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12779

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12780

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

12781

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

[_Bernoulli]

12785

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12786

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12926

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12927

\[ {}y+x y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12946

\[ {}y^{\prime } = \frac {y^{2}}{-2+x} \]
i.c.

[_separable]

12947

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

12963

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12964

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12972

\[ {}\left (4+x \right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

12982

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12983

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13004

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

13005

\[ {}y+x y^{\prime } = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13006

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

13007

\[ {}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{x t} \]

[_separable]

13014

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13038

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

13041

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13042

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

13043

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

13045

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

13050

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13391

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

13398

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13399

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

13405

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

13406

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

13421

\[ {}V^{\prime }\left (x \right )+2 y^{\prime } y = 0 \]

[_separable]

13425

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13534

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

13535

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13538

\[ {}y = x y^{\prime }+\frac {1}{y} \]

[_separable]

13544

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13553

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13555

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

13561

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13565

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13567

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13572

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13629

\[ {}y+x y^{\prime } = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13642

\[ {}y^{\prime } y = 1 \]

[_quadrature]

13850

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

13858

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13876

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

[_Bernoulli]

13877

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

13878

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

13880

\[ {}x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

13881

\[ {}y-\cos \left (x \right ) y^{\prime } = y^{2} \cos \left (x \right ) \left (-\sin \left (x \right )+1\right ) \]

[_Bernoulli]

13888

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13889

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13952

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13958

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13991

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

14012

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

14014

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

14039

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14042

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

14051

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

14055

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

14056

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

14060

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14088

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14089

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

14093

\[ {}2 y^{\prime } y = 1 \]

[_quadrature]

14094

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

14105

\[ {}x -y^{\prime } y = 0 \]

[_separable]

14108

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

14109

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

14118

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14119

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14120

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14121

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14122

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14123

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14124

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14125

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14126

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14127

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14128

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14129

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14130

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14131

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14132

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14133

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14134

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14135

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14136

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14278

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

14284

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

14285

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14286

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

14287

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

14290

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

14300

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14301

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

14302

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14303

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

14305

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

14306

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

14307

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

14310

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14311

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

14315

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14316

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

14318

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

14327

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

14328

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14331

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

14351

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14358

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14359

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14363

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14364

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14365

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14366

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14395

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

14399

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14455

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

14460

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

14464

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14466

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

14659

\[ {}y^{\prime } y = 2 x \]

[_separable]

14705

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

14710

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14711

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14721

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14723

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14727

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14729

\[ {}y^{\prime } y = x y^{2}+x \]
i.c.

[_separable]

14733

\[ {}y^{\prime } y = x y^{2}-9 x \]

[_separable]

14736

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14739

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14747

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14751

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14753

\[ {}y^{\prime } y = \sin \left (x \right ) \]
i.c.

[_separable]

14755

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

14756

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

14757

\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \]
i.c.

[_separable]

14767

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

14792

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14793

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14796

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

14797

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14798

\[ {}y^{\prime }+3 y \cot \left (x \right ) = 6 \cos \left (x \right ) y^{{2}/{3}} \]

[_Bernoulli]

14799

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14800

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14802

\[ {}3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14807

\[ {}y^{\prime }+\frac {y}{x} = y^{3} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14811

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14816

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14817

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14819

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14820

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14821

\[ {}1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14826

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14836

\[ {}x y^{\prime } = 2 y^{2}-6 y \]

[_separable]

14837

\[ {}4 y^{2}-x^{2} y^{2}+y^{\prime } = 0 \]

[_separable]

14843

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14844

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14846

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14847

\[ {}3 x y^{3}-y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14852

\[ {}y^{\prime } = \frac {3 y}{x +1}-y^{2} \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

14856

\[ {}x y y^{\prime } = 2 y^{2}+2 x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14867

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14868

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14871

\[ {}y^{\prime } y-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

14874

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14877

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

15478

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15509

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15540

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15541

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15544

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15566

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15567

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15568

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15569

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15570

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15571

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15572

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15573

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15599

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15606

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15608

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15609

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15614

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15627

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15628

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15637

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15638

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15701

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15704

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15710

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

15718

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15744

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15747

\[ {}5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15754

\[ {}y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

[_rational, _Bernoulli]

15755

\[ {}y^{\prime }+y = t y^{2} \]

[_Bernoulli]

15756

\[ {}2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

[_Bernoulli]

15757

\[ {}t y^{\prime }-y = t y^{3} \sin \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15758

\[ {}y^{\prime }-2 y = \frac {\cos \left (t \right )}{\sqrt {y}} \]

[_Bernoulli]

15759

\[ {}y^{\prime }+3 y = \sqrt {y}\, \sin \left (t \right ) \]

[_Bernoulli]

15760

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15761

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15762

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15763

\[ {}y^{\prime }-\frac {y}{t} = t^{2} y^{{3}/{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

15767

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15769

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

15774

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15786

\[ {}y^{\prime }+2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

15787

\[ {}y^{\prime }-2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

15788

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15792

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15800

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{4} \]
i.c.

[_Bernoulli]

15811

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15813

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15815

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15817

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15826

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15836

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

15837

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15839

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15850

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

15851

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

16341

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16342

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

16373

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16380

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

[_separable]

16430

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16456

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

16457

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16461

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

16462

\[ {}2 y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

[_Bernoulli]

16464

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

16485

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16487

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

16491

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

16545

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

16549

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

[_Bernoulli]

16553

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16559

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16561

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16563

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16564

\[ {}2 y^{\prime } y+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16572

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16573

\[ {}y+x y^{\prime } = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

16976

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

16977

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

16978

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

16982

\[ {}y^{\prime } y = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

[_separable]

16987

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

16988

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

16989

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

16990

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

16991

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

16992

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

16994

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

16997

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

17001

\[ {}2 y^{\prime } y = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

17003

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

17006

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

17010

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

17011

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]
i.c.

[_separable]

17060

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17062

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17063

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

17064

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

17065

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]
i.c.

[_separable]

17066

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

17067

\[ {}y^{\prime } = y \left (3-t y\right ) \]

[_Bernoulli]

17068

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

[_Bernoulli]

17082

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17097

\[ {}y^{\prime } y = x +1 \]

[_separable]

17100

\[ {}x \left (x -1\right ) y^{\prime } = y \left (y+1\right ) \]

[_separable]

17107

\[ {}x y y^{\prime } = y^{2}+x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17109

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17110

\[ {}y^{\prime } = y \left (t y^{3}-1\right ) \]

[_Bernoulli]

17111

\[ {}y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17112

\[ {}t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17113

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

[_separable]

17114

\[ {}3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17115

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

17116

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17117

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17121

\[ {}y^{\prime }-4 y^{2} {\mathrm e}^{x} = y \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

17123

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

[_Bernoulli]

17126

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

[_exact, _Bernoulli]

17130

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17131

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

17582

\[ {}x y^{\prime }-4 y = x^{2} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17587

\[ {}y+x y^{\prime } = x y^{2} \ln \left (x \right ) \]

[_Bernoulli]

17588

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

[_rational, _Bernoulli]

17590

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17610

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

[_Bernoulli]

17612

\[ {}{y^{\prime }}^{2} y+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

17614

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17633

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17734

\[ {}y^{\prime } y = {\mathrm e}^{2 x} \]

[_separable]

17741

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17755

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

17780

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17781

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17788

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17789

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17797

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17798

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17815

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

17816

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17826

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17830

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

17836

\[ {}y^{2}-y+x y^{\prime } = 0 \]

[_separable]

17842

\[ {}2 x y^{2}-y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

17855

\[ {}y+x y^{\prime } = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17856

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

17857

\[ {}y+x y^{\prime } = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17882

\[ {}y+x y^{\prime } = y^{2}+x^{2} y^{\prime } \]

[_separable]

17900

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17908

\[ {}x y^{2}+y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17918

\[ {}y+x y^{\prime } = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

17922

\[ {}x^{2} y^{\prime }-y^{2} = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18174

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18186

\[ {}x^{\prime }+2 x t +t x^{4} = 0 \]

[_separable]

18222

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18230

\[ {}y^{\prime }+\frac {y}{x} = \frac {\sin \left (x \right )}{y^{3}} \]

[_Bernoulli]

18232

\[ {}\left (T \ln \left (t \right )-1\right ) T = t T^{\prime } \]

[_Bernoulli]

18234

\[ {}y-\cos \left (x \right ) y^{\prime } = y^{2} \cos \left (x \right ) \left (-\sin \left (x \right )+1\right ) \]

[_Bernoulli]

18253

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

18303

\[ {}y^{\prime }+y \sin \left (x \right ) = y^{2} \sin \left (x \right ) \]

[_separable]

18304

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

18305

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

18306

\[ {}3 y^{2} y^{\prime }+y^{3} = x -1 \]

[_rational, _Bernoulli]

18307

\[ {}y^{\prime }-y \tan \left (x \right ) = y^{4} \sec \left (x \right ) \]

[_Bernoulli]

18317

\[ {}5 x y y^{\prime }-y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18320

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18405

\[ {}y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

18407

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18421

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

18422

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

18425

\[ {}2 y^{\prime } y+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18426

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18437

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{6} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18439

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18440

\[ {}y^{\prime }+\frac {x y}{-x^{2}+1} = x \sqrt {y} \]

unknown

18441

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

[_rational, _Bernoulli]

18448

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x^{3}}{y^{2}} \]

[_rational, _Bernoulli]

18451

\[ {}x y^{\prime }+\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18456

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18458

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

18460

\[ {}y^{\prime } = x^{3} y^{3}-x y \]

[_Bernoulli]

18465

\[ {}y^{\prime } y = a x \]

[_separable]

18468

\[ {}y^{\prime } y+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

18477

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18481

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

18497

\[ {}x y \left (y-x y^{\prime }\right ) = x +y^{\prime } y \]

[_separable]

18501

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{3} y^{\prime }+x^{3} \]

[_separable]

18515

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]