2.2.195 Problems 19401 to 19500

Table 2.391: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

19401

yxy=(x1)(yx+1)

[[_2nd_order, _with_linear_symmetries]]

19402

x2yy+(yxy)2=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

19403

x2y2x(x+1)y+2(x+1)y=x3

[[_2nd_order, _with_linear_symmetries]]

19404

(x2+a)y2yx+2y=0

[[_2nd_order, _with_linear_symmetries]]

19405

y2yx+(n2+2x2)y=0

[[_2nd_order, _with_linear_symmetries]]

19406

y+2yx+(x2+1)y=x3+3x

[[_2nd_order, _with_linear_symmetries]]

19407

(a2x2)ya2yx+x2ya=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19408

x4y+2x3y+n2y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19409

(x2+1)y2yx+a2yx2+1=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19410

(2x1)y2y+(32x)y=2ex

[[_2nd_order, _linear, _nonhomogeneous]]

19411

x2y+yxy=8x3

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19412

y+2yx+(x2+5)y=xex22

[[_2nd_order, _linear, _nonhomogeneous]]

19413

x(x2+1)2y+(x2+1)(3x2+1)y+4x(x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

19414

y+(12x2)y=x2

[[_2nd_order, _linear, _nonhomogeneous]]

19415

(x32x2)y+2x2y12(x2)y=0

[[_2nd_order, _with_linear_symmetries]]

19416

xy2(x+1)y+(x+2)y=(x2)e2x

[[_2nd_order, _linear, _nonhomogeneous]]

19417

x2y+yxy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

19418

x2y+yx9y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19419

(x2+1)yyxa2y=0

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19420

xy(xcos(x)2sin(x))+(x2+2)ysin(x)2y(xsin(x)+cos(x))=0

[[_2nd_order, _with_linear_symmetries]]

19421

xyy+4x3y=x5

[[_2nd_order, _linear, _nonhomogeneous]]

19422

(x21)y(4x23x5)y+(4x26x5)y=e2x
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

19423

(x21)y+yx=m2y

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19424

y+(11x)y+4x2ye2x=4(x3+x2)e3x

[[_2nd_order, _linear, _nonhomogeneous]]

19425

xy+(x2+1)y+2xy=2x
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19426

(x+2)y(5+2x)y+2y=ex(x+1)

[[_2nd_order, _with_linear_symmetries]]

19427

(x2+1)y+yxy=x(x2+1)3/2

[[_2nd_order, _with_linear_symmetries]]

19428

x2y(x2+2x)y+(x+2)y=0

[[_2nd_order, _with_linear_symmetries]]

19429

[xt+y=0yt+x=0]

system_of_ODEs

19430

yyx=0

[_separable]

19431

cot(y)ytan(x)=0

[_separable]

19432

x3+xy2+a2y+(y3+x2ya2x)y=0

[[_1st_order, _with_linear_symmetries], _rational]

19433

(x+2y3)y=y

[[_homogeneous, ‘class G‘], _rational]

19434

sec(x)2tan(y)+sec(y)2tan(x)y=0

[_separable]

19435

1+y2xyy=0

[_separable]

19436

y2+(x2+xy)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19437

y=6x2y72x+3y6

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19438

2x+y+1+(4x+2y1)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

19439

ycos(x)+ysin(x)=1

[_linear]

19440

y+2xy=ex2

[_linear]

19441

(x+2y3)y=y

[[_homogeneous, ‘class G‘], _rational]

19442

y+p(x)y=q(x)yn

[_Bernoulli]

19443

y+sin(2y)x=x3cos(y)2

[‘y=_G(x,y’)‘]

19444

a22xyy2(x+y)2y=0

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

19445

x2y(x3+y3)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19446

(xysin(xy)+cos(xy))y+(xysin(xy)cos(xy))y=0

[‘y=_G(x,y’)‘]

19447

y+y33+x22+(xy2+x)y4=0

[_rational]

19448

3x2y4+2xy+(2x3y2x2)y=0

[_rational]

19449

y32x2y+(2xy2x3)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19450

2y+9y18y=0

[[_2nd_order, _missing_x]]

19451

yy9y11y4y=0

[[_high_order, _missing_x]]

19452

y8y=0

[[_3rd_order, _missing_x]]

19453

y2y+y=ex

[[_3rd_order, _missing_y]]

19454

y+n2y=sec(nx)

[[_2nd_order, _linear, _nonhomogeneous]]

19455

y+y=(ex+1)2

[[_3rd_order, _linear, _nonhomogeneous]]

19456

y4y+y=acos(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

19457

y+a2y=sin(ax)

[[_3rd_order, _missing_y]]

19458

y3y+4y2y=ex+cos(x)

[[_3rd_order, _linear, _nonhomogeneous]]

19459

y2y+y=xsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

19460

y+3y+2y=x2

[[_3rd_order, _missing_y]]

19461

y2y+y=x2e3x

[[_2nd_order, _linear, _nonhomogeneous]]

19462

y+4y+4y=2sinh(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

19463

y+a2y=cos(ax)

[[_2nd_order, _linear, _nonhomogeneous]]

19464

y2y+y=xsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

19465

y3(x2+xy+y2)y2+(xy3+x2y2+x3y)yx3y3=0

[_quadrature]

19466

x2(y2y2)+y2=x4+2xyy

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

19467

(a2x2)y3+bx(a2x2)y2ybx=0

[_quadrature]

19468

(x+2y)y3+3(x+y)y2+(2x+y)y=0

[_quadrature]

19469

y1y2+1=b

[_quadrature]

19470

y=xyay

[_dAlembert]

19471

y3+my2=a(y+mx)

[[_homogeneous, ‘class C‘], _dAlembert]

19472

xy3=a+by

[_quadrature]

19473

y=tan(xyy2+1)

[_quadrature]

19474

ayy2+(2xb)yy=0

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

19475

y=x(y+1)+y2

[[_1st_order, _with_linear_symmetries], _dAlembert]

19476

e3x(y1)+e2yy3=0

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

19477

y=2yx+y2y3

[[_1st_order, _with_linear_symmetries]]

19478

y=yx+x4y2

[[_homogeneous, ‘class G‘], _rational]

19479

y2yx+ayy2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19480

x2(yyx)=yy2

[[_1st_order, _with_linear_symmetries]]

19481

xy(yyx)=yy+x

[_separable]

19482

xy2(y2+2)=2y3y+x3

[_separable]

19483

3yy22xyy+4y2x2=0

[_rational]

19484

(yy+nx)2=(y2+nx2)(y2+1)

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19485

(1y2+y4x2)y22yyx+y2x2=0

[‘y=_G(x,y’)‘]

19486

(x2+y2)(y+1)22(x+y)(y+1)(yy+x)+(yy+x)2=0

[[_homogeneous, ‘class A‘], _dAlembert]

19487

(x2+1)y2=1y2

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

19488

y2(y2+1)=r2

[_quadrature]

19489

sin(yx)cos(y)=cos(yx)sin(y)+y

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

19490

4xy2=(3xa)2

[_quadrature]

19491

4y2x(xa)(xb)=(3x22(a+b)x+ab)2

[_quadrature]

19492

y34xyy+8y2=0

[[_1st_order, _with_linear_symmetries]]

19493

y2+2yxy=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

19494

x3y2+x2yy+a3=0

[[_homogeneous, ‘class G‘]]

19495

x2y3+(2x+y)yy+y2=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

19496

xy22yy+x+2y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19497

y2y2cos(a)22yxysin(a)2+y2x2sin(a)2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19498

(2x2+1)y2+(y2+2xy+x2+2)y+2y2+1=0

[_rational]

19499

x4y+2x3yx2y+xy=1

[[_3rd_order, _with_linear_symmetries]]

19500

x2y2y=x2+1x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]