2.2.189 Problems 18801 to 18900

Table 2.391: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

18801

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

6.652

18802

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.158

18803

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

3.145

18804

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.368

18805

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.181

18806

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.417

18807

\begin{align*} 2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

16.819

18808

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

7.527

18809

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -3 \\ \end{align*}

[[_Emden, _Fowler]]

4.591

18810

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 3 \\ \end{align*}

[[_Emden, _Fowler]]

2.162

18811

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

3.335

18812

\begin{align*} y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.551

18813

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.196

18814

\begin{align*} m y^{\prime \prime }+k y&=0 \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

6.740

18815

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.447

18816

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.764

18817

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=-3 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

35.092

18818

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

7.657

18819

\begin{align*} y^{\prime \prime }+9 y&=t^{2} {\mathrm e}^{3 t}+6 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.334

18820

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.414

18821

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.235

18822

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.232

18823

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.740

18824

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.439

18825

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=t^{2}+3 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

30.811

18826

\begin{align*} y^{\prime \prime }+y&=3 \sin \left (2 t \right )+\cos \left (2 t \right ) t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

16.385

18827

\begin{align*} u^{\prime \prime }+w_{0}^{2} u&=\cos \left (w t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.543

18828

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=2 \sinh \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.540

18829

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cosh \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

34.982

18830

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.809

18831

\begin{align*} y^{\prime \prime }+4 y&=t^{2}+3 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

86.056

18832

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

66.871

18833

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.042

18834

\begin{align*} y^{\prime \prime }+4 y&=3 \sin \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

46.280

18835

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

96.949

18836

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

27.069

18837

\begin{align*} y^{\prime \prime }+y&=t \left (1+\sin \left (t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.903

18838

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&={\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

33.253

18839

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.270

18840

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 t^{2}+4 \,{\mathrm e}^{2 t} t +t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.755

18841

\begin{align*} y^{\prime \prime }+4 y&=t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

36.659

18842

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

33.938

18843

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.550

18844

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.434

18845

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6.566

18846

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x^{2}+2 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.412

18847

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.240

18848

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

220.458

18849

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

38.287

18850

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

166.548

18851

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=2 \cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

61.326

18852

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.767

18853

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (w t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.918

18854

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (\frac {t}{4}\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.208

18855

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.602

18856

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (6 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.865

18857

\begin{align*} y^{\prime \prime }+y+\frac {y^{3}}{5}&=\cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.987

18858

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5}&=\cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

1.050

18859

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

23.020

18860

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.451

18861

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.521

18862

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.852

18863

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.020

18864

\begin{align*} y^{\prime \prime }+4 y&=3 \sec \left (2 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.161

18865

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.944

18866

\begin{align*} y^{\prime \prime }+4 y&=2 \csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.013

18867

\begin{align*} 4 y^{\prime \prime }+y&=2 \sec \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.154

18868

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.261

18869

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.192

18870

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.890

18871

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=2 t^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.316

18872

\begin{align*} t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.130

18873

\begin{align*} \left (1-t \right ) y^{\prime \prime }+y^{\prime } t -y&=2 \left (t -1\right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.738

18874

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=3 x^{{3}/{2}} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.647

18875

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.865

18876

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=g \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.834

18877

\begin{align*} t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.859

18878

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{2} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.775

18879

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.323

18880

\begin{align*} t^{2} y^{\prime \prime }+7 y^{\prime } t +5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5.756

18881

\begin{align*} y^{\prime \prime }+y&=g \left (t \right ) \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.106

18882

\begin{align*} t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.237

18883

\begin{align*} \left (1-t \right ) y^{\prime \prime }+y^{\prime } t -y&=2 \left (t -1\right )^{2} {\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.254

18884

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.342

18885

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.185

18886

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.194

18887

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.193

18888

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{t} t^{2}+7 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.310

18889

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&=t^{2}+7 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.280

18890

\begin{align*} y^{\prime \prime }+4 y&=3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.313

18891

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\cos \left (2 t \right ) t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.360

18892

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.281

18893

\begin{align*} y^{\prime \prime \prime \prime }-6 y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 9 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _linear, _nonhomogeneous]]

0.548

18894

\begin{align*} y^{\prime \prime }+16 y&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 9 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.589

18895

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.750

18896

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.091

18897

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.192

18898

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.249

18899

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.208

18900

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.176