2.2.196 Problems 19501 to 19571

Table 2.393: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

19501

y2+2yxy=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.548

19502

x3y2+x2yy+a3=0

[[_homogeneous, ‘class G‘]]

2.947

19503

x2y3+(2x+y)yy+y2=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.777

19504

xy22yy+x+2y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.914

19505

y2y2cos(a)22yxysin(a)2+y2x2sin(a)2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

53.275

19506

(2x2+1)y2+(y2+2xy+x2+2)y+2y2+1=0

[_rational]

68.690

19507

x4y+2x3yx2y+xy=1

[[_3rd_order, _with_linear_symmetries]]

0.253

19508

x2y2y=x2+1x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.890

19509

x3yx2y+2yx2y=x2+3x

[[_3rd_order, _with_linear_symmetries]]

0.320

19510

x3y+6x2y+4yx4y=0

[[_3rd_order, _with_linear_symmetries]]

0.131

19511

x3y+3x2y+yx+y=0

[[_3rd_order, _exact, _linear, _homogeneous]]

0.159

19512

x2y3yx+4y=2x2

[[_2nd_order, _with_linear_symmetries]]

1.485

19513

x3y+2x2y+2y=10x+10x

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.891

19514

x2y+3yx+y=1(1x)2

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.653

19515

(2x1)3y+(2x1)y2y=0

[[_3rd_order, _with_linear_symmetries]]

0.072

19516

(x+a)2y4(x+a)y+6y=x

[[_2nd_order, _with_linear_symmetries]]

1.101

19517

16(x+1)4y+96(x+1)3y+104(x+1)2y+8(x+1)y+y=x2+4x+3

[[_high_order, _with_linear_symmetries]]

0.097

19518

(x+1)2y+(x+1)y+y=4cos(ln(x+1))

[[_2nd_order, _linear, _nonhomogeneous]]

1.542

19519

2x2yy+4y2=x2y2+2xyy

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.350

19520

x2y(2m1)xy+(m2+n2)y=n2xmln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

2.508

19521

x2y3yx+y=ln(x)sin(ln(x))+1x

[[_2nd_order, _linear, _nonhomogeneous]]

4.150

19522

(x2+x+1)y+(3+6x)y+6y=0

[[_3rd_order, _missing_y]]

0.992

19523

(x3x)y+(8x23)y+14yx+4y=2x3

[[_3rd_order, _fully, _exact, _linear]]

1.418

19524

y+cos(x)y2ysin(x)cos(x)y=sin(2x)

[[_3rd_order, _fully, _exact, _linear]]

1.429

19525

xy+2yx+3y=x

[[_2nd_order, _with_linear_symmetries]]

1.066

19526

2x2(x+1)y+x(3+7x)y3y=x2

[[_2nd_order, _with_linear_symmetries]]

0.588

19527

2x2cos(y)y2x2sin(y)y2+xcos(y)ysin(y)=ln(x)

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.870

19528

x2yy+(yxy)23y2=0

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.096

19529

y+3yx+2yy2+(2y2y+x2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.303

19530

(y2+2x2y)y+2(x+y)y2+yx+y=0

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

161.518

19531

y=xex

[[_3rd_order, _quadrature]]

0.150

19532

y=x2sin(x)

[[_2nd_order, _quadrature]]

1.250

19533

y=sec(x)2

[[_2nd_order, _quadrature]]

1.152

19534

y+y+y3=0

[[_2nd_order, _missing_x]]

3.104

19535

(x2+1)y+1+y2=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.860

19536

y(1ln(y))y+(1+ln(y))y2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.953

19537

yyy2=y2ln(y)

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.243

19538

yyy=ny2+a2y

[[_2nd_order, _missing_x]]

18.850

19539

xy+y=0

[[_2nd_order, _missing_y]]

0.829

19540

ya2y=0

[[_high_order, _missing_x]]

0.072

19541

x4y=(yyx)3

[[_2nd_order, _with_linear_symmetries]]

0.294

19542

xy+2y=y2+x2y

[NONE]

0.280

19543

xy(2x1)y+(x1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.394

19544

sin(x)2y=2y

[[_2nd_order, _with_linear_symmetries]]

1.088

19545

(x2+1)y+yxy=x(x2+1)3/2

[[_2nd_order, _with_linear_symmetries]]

1.981

19546

(x+2)y(5+2x)y+2y=ex(x+1)

[[_2nd_order, _with_linear_symmetries]]

0.743

19547

ycot(x)y(1cot(x))y=exsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

2.333

19548

(xsin(x)+cos(x))yxcos(x)y+cos(x)y=0

[[_2nd_order, _with_linear_symmetries]]

1.445

19549

y+(1+2cot(x)x2x2)y=xcos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.826

19550

x2y2(x2+x)y+(x2+2x+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.531

19551

x2y2yx+(x2+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.655

19552

y+yx1/3+(14x2/316x4/36x2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.587

19553

y2ytan(x)+y=0

[_Lienard]

0.780

19554

y4yx+(4x21)y=3ex2sin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.866

19555

y(8e2x+2)y+4e4xy=e6x

[[_2nd_order, _linear, _nonhomogeneous]]

1.342

19556

y+cot(x)y+ycsc(x)22=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.227

19557

x6y+3x5y+a2y=1x2

[[_2nd_order, _linear, _nonhomogeneous]]

1.674

19558

xyy4x3y=8x3sin(x2)

[[_2nd_order, _linear, _nonhomogeneous]]

2.347

19559

cos(x)y+ysin(x)2cos(x)3y=2cos(x)5

[[_2nd_order, _linear, _nonhomogeneous]]

2.960

19560

(x+1)2y+(x+1)y+y=4cos(ln(x+1))

[[_2nd_order, _linear, _nonhomogeneous]]

1.589

19561

xy+(x1)yy=x2

[[_2nd_order, _with_linear_symmetries]]

0.732

19562

3x2y+(6x2+6x+2)y4y=0

[[_2nd_order, _with_linear_symmetries]]

0.742

19563

y+a2y=sec(ax)

[[_2nd_order, _linear, _nonhomogeneous]]

1.020

19564

x2y+yxy=x2ex

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.287

19565

x2y2x(x+1)y+2(x+1)y=x3

[[_2nd_order, _with_linear_symmetries]]

0.883

19566

y+(1cot(x))ycot(x)y=sin(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

2.644

19567

y6y+11y6y=e2x

[[_3rd_order, _with_linear_symmetries]]

0.149

19568

[x7x+y=0y2x5y=0]

system_of_ODEs

0.484

19569

[x+5x+y=etyx+3y=e2t]

system_of_ODEs

0.576

19570

[4x+9y+11x+31y=et3x+7y+8x+24y=e2t]

system_of_ODEs

0.629

19571

[xt=t2xyt=tx+ty+2xt]

system_of_ODEs

0.061