2.16.152 Problems 15101 to 15200

Table 2.320: Main lookup table. Sorted sequentially by problem number.

#

ODE

Program classification

CAS classification

Solved?

Verified?

time (sec)

15101

\[ {}{y^{\prime }}^{2} x = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

quadrature

[_quadrature]

0.648

15102

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} = a \]

quadrature

[_quadrature]

14.369

15103

\[ {}y^{\frac {2}{5}}+{y^{\prime }}^{\frac {2}{5}} = a^{\frac {2}{5}} \]

quadrature

[_quadrature]

3.309

15104

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

quadrature

[_quadrature]

0.668

15105

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

quadrature

[_quadrature]

0.714

15106

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

quadrature

[_quadrature]

1.055

15107

\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.528

15108

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.702

15109

\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

dAlembert

[_dAlembert]

1.829

15110

\[ {}y = {y^{\prime }}^{2} x -\frac {1}{y^{\prime }} \]

dAlembert

[_dAlembert]

151.895

15111

\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

dAlembert

[_dAlembert]

1.561

15112

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.572

15113

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.279

15114

\[ {}{y^{\prime }}^{2} x -y y^{\prime }-y^{\prime }+1 = 0 \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.306

15115

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

clairaut

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.637

15116

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

clairaut

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.299

15117

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 \,{\mathrm e}^{x} y = 1-{\mathrm e}^{2 x} \]

riccati

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.674

15118

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

riccati

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.881

15119

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

riccati, first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

0.905

15120

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

riccati, exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational, _Riccati]

0.944

15121

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y y^{\prime }-4 x = 0 \]

unknown

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

N/A

2.936

15122

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

quadrature

[_quadrature]

0.335

15123

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

90.18

15124

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

quadrature

[_quadrature]

0.23

15125

\[ {}y^{\prime } = y^{\frac {2}{3}}+a \]

quadrature

[_quadrature]

0.427

15126

\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

69.164

15127

\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

3.633

15128

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

dAlembert

[[_homogeneous, ‘class C‘], _dAlembert]

0.437

15129

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

quadrature

[_quadrature]

0.35

15130

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \]

dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.348

15131

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

dAlembert

[[_homogeneous, ‘class A‘], _dAlembert]

1.498

15132

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

quadrature

[_quadrature]

0.394

15133

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_linear_symmetries]]

3.18

15134

\[ {}3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y = 0 \]

dAlembert

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.298

15135

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

clairaut

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

2.647

15136

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

riccati, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _Riccati]

0.559

15137

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

5.52

15138

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

bernoulli, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

9.935

15139

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

exact, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

1.65

15140

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

exact, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

1.411

15141

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

exact

[_exact, _rational]

1.541

15142

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

riccati, bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

0.984

15143

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

exact, linear, first_order_ode_lie_symmetry_lookup

[_linear]

0.996

15144

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[[_1st_order, _with_exponential_symmetries]]

0.829

15145

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

quadrature

[_quadrature]

0.163

15146

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.998

15147

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.427

15148

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

linear, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_linear]

0.589

15149

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.276

15150

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

1.551

15151

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

exact, linear, separable, homogeneousTypeD2, first_order_ode_lie_symmetry_lookup

[_separable]

0.583

15152

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.174

15153

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

i.c.

exact, homogeneousTypeD2, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

7.802

15154

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.013

15155

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.623

15156

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

riccati, bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.939

15157

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

bernoulli, homogeneousTypeD2, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

1.345

15158

\[ {}\left (-1+x \right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

2.444

15159

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

exactWithIntegrationFactor, first_order_ode_lie_symmetry_calculated

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.728

15160

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

exactWithIntegrationFactor

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.917

15161

\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

first order special form ID 1, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class C‘], _dAlembert]

0.79

15162

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

1.443

15163

\[ {}x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

1.296

15164

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.179

15165

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.971

15166

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

i.c.

riccati, bernoulli, exactWithIntegrationFactor, first_order_ode_lie_symmetry_lookup

[_Bernoulli]

1.35

15167

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

exact, separable, first_order_ode_lie_symmetry_lookup

[_separable]

59.475

15168

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

exactWithIntegrationFactor

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.1

15169

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.893

15170

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

i.c.

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.923

15171

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

exactByInspection, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘], _rational]

1.227

15172

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

homogeneousTypeMapleC, first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class C‘], _rational]

1.625

15173

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

first_order_ode_lie_symmetry_calculated

[[_homogeneous, ‘class G‘]]

45.149

15174

\[ {}y^{\prime }+{y^{\prime }}^{2} x -y = 0 \]

dAlembert

[_rational, _dAlembert]

0.367

15175

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _linear, _nonhomogeneous]]

0.612

15176

\[ {}x y^{\prime \prime \prime } = 2 \]

higher_order_missing_y

[[_3rd_order, _quadrature]]

0.227

15177

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.329

15178

\[ {}\left (-1+x \right ) y^{\prime \prime } = 1 \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_quadrature, second_order_linear_constant_coeff

[[_2nd_order, _quadrature]]

1.053

15179

\[ {}{y^{\prime }}^{4} = 1 \]

quadrature

[_quadrature]

0.375

15180

\[ {}y^{\prime \prime }+y = 0 \]

kovacic, second_order_linear_constant_coeff, second_order_ode_can_be_made_integrable

[[_2nd_order, _missing_x]]

0.675

15181

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

kovacic, second_order_linear_constant_coeff

[[_2nd_order, _missing_x]]

0.315

15182

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x]]

2.97

15183

\[ {}{y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

second_order_integrable_as_is, second_order_ode_missing_x, exact nonlinear second order ode

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6.869

15184

\[ {}y^{\prime \prime \prime \prime } = x \]

higher_order_linear_constant_coefficients_ODE

[[_high_order, _quadrature]]

0.132

15185

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

higher_order_linear_constant_coefficients_ODE

[[_3rd_order, _quadrature]]

0.182

15186

\[ {}y^{\prime \prime } \left (2+x \right )^{5} = 1 \]

i.c.

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_quadrature, second_order_linear_constant_coeff

[[_2nd_order, _quadrature]]

0.948

15187

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

i.c.

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_quadrature, second_order_linear_constant_coeff

[[_2nd_order, _quadrature]]

1.001

15188

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_quadrature, second_order_linear_constant_coeff

[[_2nd_order, _quadrature]]

0.646

15189

\[ {}x y^{\prime \prime } = y^{\prime } \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

1.02

15190

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

0.675

15191

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

kovacic, second_order_ode_missing_y

[[_2nd_order, _missing_y]]

0.651

15192

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

kovacic, exact linear second order ode, second_order_integrable_as_is, second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

1.184

15193

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

second_order_ode_missing_y, second_order_ode_non_constant_coeff_transformation_on_B

[[_2nd_order, _missing_y]]

0.678

15194

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

separable

[_separable]

1.428

15195

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

i.c.

second_order_ode_missing_y

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

0.941

15196

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

unknown

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

N/A

0.0

15197

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

higher_order_missing_y

[[_3rd_order, _missing_y]]

0.553

15198

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x]]

2.484

15199

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.346

15200

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

second_order_ode_missing_x, second_order_ode_missing_y

[[_2nd_order, _missing_x]]

1.649