2.2.20 Problems 1901 to 2000

Table 2.41: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1901

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (1-4 x \right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.696

1902

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.637

1903

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.675

1904

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.707

1905

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.668

1906

\[ {}y^{\prime \prime }+3 x y^{\prime }+\left (2 x^{2}+4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.539

1907

\[ {}\left (4 x +2\right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.564

1908

\[ {}\left (2 x +1\right ) y^{\prime \prime }-\left (-2 x +1\right ) y^{\prime }-\left (3-2 x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.621

1909

\[ {}\left (5+2 x \right ) y^{\prime \prime }-y^{\prime }+\left (x +5\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.662

1910

\[ {}\left (4+x \right ) y^{\prime \prime }-\left (4+2 x \right ) y^{\prime }+\left (6+x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.678

1911

\[ {}\left (2+3 x \right ) y^{\prime \prime }-x y^{\prime }+2 x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.630

1912

\[ {}\left (2 x +3\right ) y^{\prime \prime }+3 y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.672

1913

\[ {}\left (2 x +3\right ) y^{\prime \prime }-3 y^{\prime }-\left (x +2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.662

1914

\[ {}\left (10-2 x \right ) y^{\prime \prime }+\left (x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.635

1915

\[ {}\left (7+x \right ) y^{\prime \prime }+\left (8+2 x \right ) y^{\prime }+\left (x +5\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.678

1916

\[ {}\left (6+4 x \right ) y^{\prime \prime }+\left (2 x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.652

1917

\[ {}\left (\beta \,x^{2}+\alpha x +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.545

1918

\[ {}\left (2 x^{2}+3 x +1\right ) y^{\prime \prime }+\left (6+8 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.697

1919

\[ {}\left (6 x^{2}-5 x +1\right ) y^{\prime \prime }-\left (10-24 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.701

1920

\[ {}\left (4 x^{2}-4 x +1\right ) y^{\prime \prime }-\left (8-16 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.677

1921

\[ {}\left (x^{2}+4 x +4\right ) y^{\prime \prime }+\left (8+4 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.668

1922

\[ {}\left (3 x^{2}+8 x +4\right ) y^{\prime \prime }+\left (16+12 x \right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.698

1923

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (2 x^{2}+3\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.550

1924

\[ {}y^{\prime \prime }-3 x y^{\prime }+\left (2 x^{2}+5\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.540

1925

\[ {}y^{\prime \prime }+5 x y^{\prime }-\left (-x^{2}+3\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.543

1926

\[ {}y^{\prime \prime }-2 x y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.556

1927

\[ {}y^{\prime \prime }+3 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.545

1928

\[ {}2 y^{\prime \prime }+5 x y^{\prime }+\left (2 x^{2}+4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.599

1929

\[ {}3 y^{\prime \prime }+2 x y^{\prime }+\left (-x^{2}+4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.549

1930

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.541

1931

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.526

1932

\[ {}\left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.657

1933

\[ {}y^{\prime \prime }+\left (x^{2}+2 x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.623

1934

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.674

1935

\[ {}\left (x +1\right ) y^{\prime \prime }+\left (2 x^{2}-3 x +1\right ) y^{\prime }-\left (x -4\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.717

1936

\[ {}y^{\prime \prime }+\left (3 x^{2}+12 x +13\right ) y^{\prime }+\left (5+2 x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.658

1937

\[ {}\left (3 x^{2}+2 x +1\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (x +1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.698

1938

\[ {}\left (x^{2}+4 x +3\right ) y^{\prime \prime }-\left (-x^{2}+4 x +5\right ) y^{\prime }-\left (x +2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.761

1939

\[ {}\left (x^{2}+2 x +1\right ) y^{\prime \prime }+\left (1-x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.606

1940

\[ {}\left (-2 x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+3 x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.772

1941

\[ {}\left (2 x^{2}-11 x +16\right ) y^{\prime \prime }+\left (x^{2}-6 x +10\right ) y^{\prime }-\left (2-x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.741

1942

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.046

1943

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.026

1944

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.072

1945

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (5 x^{2}+3 x +3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.228

1946

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.951

1947

\[ {}x^{2} \left (x^{2}+3 x +3\right ) y^{\prime \prime }+x \left (7 x^{2}+8 x +5\right ) y^{\prime }-\left (-9 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.139

1948

\[ {}4 x^{2} y^{\prime \prime }+x \left (4 x^{2}+2 x +7\right ) y^{\prime }-\left (-7 x^{2}-4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.053

1949

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.023

1950

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.029

1951

\[ {}8 x^{2} y^{\prime \prime }-2 x \left (-x^{2}-4 x +3\right ) y^{\prime }+\left (x^{2}+6 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.986

1952

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.985

1953

\[ {}x \left (x^{2}+x +3\right ) y^{\prime \prime }+\left (-x^{2}+x +4\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.027

1954

\[ {}10 x^{2} \left (2 x^{2}+x +1\right ) y^{\prime \prime }+x \left (66 x^{2}+13 x +13\right ) y^{\prime }-\left (10 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.133

1955

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.876

1956

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (5+4 x \right ) y^{\prime }-\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.983

1957

\[ {}2 x^{2} y^{\prime \prime }+x \left (x +5\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.880

1958

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.872

1959

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.961

1960

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.906

1961

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.916

1962

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.997

1963

\[ {}x^{2} \left (4+x \right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.947

1964

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.967

1965

\[ {}x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (5+18 x \right ) y^{\prime }-\left (1-12 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.956

1966

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.924

1967

\[ {}x^{2} \left (8+x \right ) y^{\prime \prime }+x \left (2+3 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.120

1968

\[ {}x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.091

1969

\[ {}2 x^{2} \left (2+3 x \right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.133

1970

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.056

1971

\[ {}x^{2} \left (6+x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.108

1972

\[ {}8 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.927

1973

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.963

1974

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.907

1975

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.836

1976

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.957

1977

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.920

1978

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.995

1979

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.016

1980

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.003

1981

\[ {}3 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+5 x \left (x^{2}+1\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.944

1982

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.878

1983

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.910

1984

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.994

1985

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.970

1986

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.982

1987

\[ {}x^{2} \left (x^{2}+8\right ) y^{\prime \prime }+7 x \left (x^{2}+2\right ) y^{\prime }-\left (-9 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.970

1988

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.968

1989

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.059

1990

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.960

1991

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.872

1992

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.966

1993

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.985

1994

\[ {}9 x^{2} \left (x +5\right ) y^{\prime \prime }+9 x \left (5+9 x \right ) y^{\prime }-\left (5-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.155

1995

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.967

1996

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.116

1997

\[ {}3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.945

1998

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.024

1999

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.984

2000

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.072