# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3 = 0
\] |
[_rational, _Riccati] |
✓ |
2.687 |
|
\[
{}\left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (2+3 x \right ) y-6 x +8 = 0
\] |
[_rational, _Riccati] |
✓ |
2.960 |
|
\[
{}x^{2} \left (y^{\prime }+y^{2}\right )+x y+x^{2}-\frac {1}{4} = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
1.642 |
|
\[
{}x^{2} \left (y^{\prime }+y^{2}\right )-7 x y+7 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
2.400 |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.464 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.422 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.132 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.655 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.168 |
|
\[
{}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.384 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 2 x^{2}+2
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.829 |
|
\[
{}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.012 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.205 |
|
\[
{}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.869 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{{5}/{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.866 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
6.965 |
|
\[
{}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.293 |
|
\[
{}2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.983 |
|
\[
{}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.012 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.873 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
12.740 |
|
\[
{}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
7.701 |
|
\[
{}\sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
2.507 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.060 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = x^{{7}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
11.469 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 3 x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.891 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.032 |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = x^{{3}/{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.718 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (4+x \right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.638 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.846 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
10.920 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 \left (x -1\right )^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.604 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.643 |
|
\[
{}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.682 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.891 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.633 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.782 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = -2 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.049 |
|
\[
{}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.159 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+x y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.632 |
|
\[
{}\left (3 x^{2}+1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.679 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }+\left (2-3 x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.669 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.671 |
|
\[
{}\left (3 x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.628 |
|
\[
{}x y^{\prime \prime }+\left (4+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.699 |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-3 x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.707 |
|
\[
{}\left (2-x \right ) y^{\prime \prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.524 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }+2 \left (x -1\right )^{2} y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.682 |
|
\[
{}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (2-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.422 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.351 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (-x^{2}-6 x +1\right ) y^{\prime }+\left (x^{2}+6 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.995 |
|
\[
{}x^{2} \left (3 x +1\right ) y^{\prime \prime }+x \left (x^{2}+12 x +2\right ) y^{\prime }+2 x \left (x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.896 |
|
\[
{}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.985 |
|
\[
{}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.431 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.611 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.580 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+20 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.599 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }-12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.618 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.616 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }+\frac {y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.617 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }-4 y = 0
\] |
[_Gegenbauer] |
✓ |
0.614 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }+28 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.611 |
|
\[
{}y^{\prime \prime }+x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.556 |
|
\[
{}y^{\prime \prime }+2 x y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.556 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.605 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 x y^{\prime }-6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.616 |
|
\[
{}\left (8 x^{2}+1\right ) y^{\prime \prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.602 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.554 |
|
\[
{}y^{\prime \prime }-\left (x -3\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.545 |
|
\[
{}\left (2 x^{2}-4 x +1\right ) y^{\prime \prime }+10 \left (x -1\right ) y^{\prime }+6 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.693 |
|
\[
{}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (-2+x \right ) y^{\prime }+36 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.678 |
|
\[
{}\left (3 x^{2}+6 x +5\right ) y^{\prime \prime }+9 \left (x +1\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.664 |
|
\[
{}\left (x^{2}-4\right ) y^{\prime \prime }-x y^{\prime }-3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.611 |
|
\[
{}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.543 |
|
\[
{}\left (3 x^{2}-6 x +5\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.659 |
|
\[
{}\left (4 x^{2}-24 x +37\right ) y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.636 |
|
\[
{}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.635 |
|
\[
{}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.655 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.605 |
|
\[
{}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.560 |
|
\[
{}y^{\prime \prime }-x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.472 |
|
\[
{}\left (-2 x^{3}+1\right ) y^{\prime \prime }-10 x^{2} y^{\prime }-8 x y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.631 |
|
\[
{}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.630 |
|
\[
{}\left (-2 x^{3}+1\right ) y^{\prime \prime }+6 x^{2} y^{\prime }+24 x y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.608 |
|
\[
{}\left (-x^{3}+1\right ) y^{\prime \prime }+15 x^{2} y^{\prime }-36 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.623 |
|
\[
{}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.630 |
|
\[
{}y^{\prime \prime }+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.468 |
|
\[
{}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.539 |
|
\[
{}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.573 |
|
\[
{}\left (-x^{6}+1\right ) y^{\prime \prime }-12 x^{5} y^{\prime }-30 x^{4} y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.616 |
|
\[
{}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.568 |
|
\[
{}\left (3 x +1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.630 |
|
\[
{}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+8 x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.659 |
|
\[
{}\left (-2 x^{2}+1\right ) y^{\prime \prime }+\left (2-6 x \right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.662 |
|
\[
{}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.673 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.574 |
|
\[
{}\left (x^{2}+3 x +3\right ) y^{\prime \prime }+\left (6+4 x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.661 |
|
\[
{}\left (4+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.566 |
|
\[
{}\left (2 x^{2}-3 x +2\right ) y^{\prime \prime }-\left (4-6 x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.703 |
|
\[
{}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.701 |
|