2.2.12 Problems 1101 to 1200

Table 2.37: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

1101

\begin{align*} \frac {y}{t}+y^{\prime }&=3 \cos \left (2 t \right ) \\ \end{align*}

[_linear]

2.290

1102

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.720

1103

\begin{align*} 2 y+y^{\prime } t&=\sin \left (t \right ) \\ \end{align*}

[_linear]

2.421

1104

\begin{align*} 2 t y+y^{\prime }&=2 t \,{\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

4.818

1105

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\ \end{align*}

[_linear]

4.051

1106

\begin{align*} y+2 y^{\prime }&=3 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.180

1107

\begin{align*} -y+y^{\prime } t&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[_linear]

1.788

1108

\begin{align*} y+y^{\prime }&=5 \sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.456

1109

\begin{align*} y+2 y^{\prime }&=3 t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.280

1110

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{2 t} t \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.412

1111

\begin{align*} 2 y+y^{\prime }&=t \,{\mathrm e}^{-2 t} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.671

1112

\begin{align*} 2 y+y^{\prime } t&=t^{2}-t +1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[_linear]

1.832

1113

\begin{align*} \frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_linear]

1.727

1114

\begin{align*} -2 y+y^{\prime }&={\mathrm e}^{2 t} \\ y \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.984

1115

\begin{align*} 2 y+y^{\prime } t&=\sin \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_linear]

1.712

1116

\begin{align*} 4 t^{2} y+t^{3} y^{\prime }&={\mathrm e}^{-t} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_linear]

1.691

1117

\begin{align*} \left (1+t \right ) y+y^{\prime } t&=t \\ y \left (\ln \left (2\right )\right ) &= 1 \\ \end{align*}

[_linear]

1.262

1118

\begin{align*} -\frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.499

1119

\begin{align*} -y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.116

1120

\begin{align*} -2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.337

1121

\begin{align*} \left (1+t \right ) y+y^{\prime } t&=2 t \,{\mathrm e}^{-t} \\ y \left (1\right ) &= a \\ \end{align*}

[_linear]

3.017

1122

\begin{align*} 2 y+y^{\prime } t&=\frac {\sin \left (t \right )}{t} \\ y \left (-\frac {\pi }{2}\right ) &= a \\ \end{align*}

[_linear]

1.750

1123

\begin{align*} y \cos \left (t \right )+\sin \left (t \right ) y^{\prime }&={\mathrm e}^{t} \\ y \left (1\right ) &= a \\ \end{align*}

[_linear]

68.983

1124

\begin{align*} \frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

2.564

1125

\begin{align*} \frac {2 y}{3}+y^{\prime }&=1-\frac {t}{2} \\ \end{align*}

[[_linear, ‘class A‘]]

0.790

1126

\begin{align*} \frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.859

1127

\begin{align*} -y+y^{\prime }&=1+3 \sin \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.524

1128

\begin{align*} -\frac {3 y}{2}+y^{\prime }&=2 \,{\mathrm e}^{t}+3 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.821

1129

\begin{align*} y^{\prime }&=\frac {x^{2}}{y} \\ \end{align*}

[_separable]

2.565

1130

\begin{align*} y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\ \end{align*}

[_separable]

1.497

1131

\begin{align*} \sin \left (x \right ) y^{2}+y^{\prime }&=0 \\ \end{align*}

[_separable]

2.220

1132

\begin{align*} y^{\prime }&=\frac {3 x^{2}-1}{3+2 y} \\ \end{align*}

[_separable]

2.034

1133

\begin{align*} y^{\prime }&=\cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \\ \end{align*}

[_separable]

3.072

1134

\begin{align*} y^{\prime } x&=\sqrt {1-y^{2}} \\ \end{align*}

[_separable]

4.056

1135

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \\ \end{align*}

[‘y=_G(x,y’)‘]

1.769

1136

\begin{align*} y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\ \end{align*}

[_separable]

1.302

1137

\begin{align*} y^{\prime }&=\left (1-2 x \right ) y^{2} \\ y \left (0\right ) &= -{\frac {1}{6}} \\ \end{align*}

[_separable]

2.372

1138

\begin{align*} y^{\prime }&=\frac {1-2 x}{y} \\ y \left (1\right ) &= -2 \\ \end{align*}

[_separable]

2.647

1139

\begin{align*} x +y y^{\prime } {\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

1.841

1140

\begin{align*} r^{\prime }&=\frac {r^{2}}{x} \\ r \left (1\right ) &= 2 \\ \end{align*}

[_separable]

2.872

1141

\begin{align*} y^{\prime }&=\frac {2 x}{y+x^{2} y} \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

1.811

1142

\begin{align*} y^{\prime }&=\frac {x y^{2}}{\sqrt {x^{2}+1}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.329

1143

\begin{align*} y^{\prime }&=\frac {2 x}{1+2 y} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_separable]

2.203

1144

\begin{align*} y^{\prime }&=\frac {x \left (x^{2}+1\right )}{4 y^{3}} \\ y \left (0\right ) &= -\frac {\sqrt {2}}{2} \\ \end{align*}

[_separable]

1.796

1145

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.742

1146

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.089

1147

\begin{align*} \sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime }&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[_separable]

44.329

1148

\begin{align*} \sqrt {-x^{2}+1}\, y^{2} y^{\prime }&=\arcsin \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

4.355

1149

\begin{align*} y^{\prime }&=\frac {3 x^{2}+1}{-6 y+3 y^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

1.876

1150

\begin{align*} y^{\prime }&=\frac {3 x^{2}}{-4+3 y^{2}} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

1.597

1151

\begin{align*} y^{\prime }&=2 y^{2}+x y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.413

1152

\begin{align*} y^{\prime }&=\frac {2-{\mathrm e}^{x}}{3+2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

1.996

1153

\begin{align*} y^{\prime }&=\frac {2 \cos \left (2 x \right )}{3+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

5.261

1154

\begin{align*} y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.734

1155

\begin{align*} y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\ \end{align*}

[_separable]

2.909

1156

\begin{align*} y^{\prime }&=\frac {t y \left (4-y\right )}{1+t} \\ \end{align*}

[_separable]

4.530

1157

\begin{align*} y^{\prime }&=\frac {a y+b}{d +c y} \\ \end{align*}

[_quadrature]

1.550

1158

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.059

1159

\begin{align*} y^{\prime }&=\frac {x^{2}+3 y^{2}}{2 y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.650

1160

\begin{align*} y^{\prime }&=\frac {4 y-3 x}{2 x -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.997

1161

\begin{align*} y^{\prime }&=-\frac {4 x +3 y}{2 x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.957

1162

\begin{align*} y^{\prime }&=\frac {x +3 y}{x -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.174

1163

\begin{align*} x^{2}+3 y x +y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.829

1164

\begin{align*} y^{\prime }&=\frac {x^{2}-3 y^{2}}{2 y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.704

1165

\begin{align*} y^{\prime }&=\frac {3 y^{2}-x^{2}}{2 y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

133.943

1166

\begin{align*} y \ln \left (t \right )+\left (t -3\right ) y^{\prime }&=2 t \\ \end{align*}

[_linear]

2.512

1167

\begin{align*} y+\left (t -4\right ) t y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[_separable]

2.049

1168

\begin{align*} \tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_linear]

1.796

1169

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (-3\right ) &= 1 \\ \end{align*}

[_linear]

3.207

1170

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (1\right ) &= -3 \\ \end{align*}

[_linear]

2.037

1171

\begin{align*} y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\ \end{align*}

[_linear]

1.937

1172

\begin{align*} y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\ \end{align*}

[_separable]

1.618

1173

\begin{align*} y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\ \end{align*}

[_separable]

2.513

1174

\begin{align*} y^{\prime }&=-\frac {4 t}{y} \\ \end{align*}

[_separable]

3.546

1175

\begin{align*} y^{\prime }&=2 t y^{2} \\ \end{align*}

[_separable]

2.847

1176

\begin{align*} y^{3}+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

2.903

1177

\begin{align*} y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\ \end{align*}

[_separable]

1.528

1178

\begin{align*} y^{\prime }&=t \left (3-y\right ) y \\ \end{align*}

[_separable]

2.832

1179

\begin{align*} y^{\prime }&=y \left (3-t y\right ) \\ \end{align*}

[_Bernoulli]

1.849

1180

\begin{align*} y^{\prime }&=-y \left (3-t y\right ) \\ \end{align*}

[_Bernoulli]

1.799

1181

\begin{align*} y^{\prime }&=t -1-y^{2} \\ \end{align*}

[_Riccati]

2.720

1182

\begin{align*} y^{\prime }&=a y+b y^{2} \\ \end{align*}

[_quadrature]

3.557

1183

\begin{align*} y^{\prime }&=y \left (y-2\right ) \left (y-1\right ) \\ \end{align*}

[_quadrature]

1.075

1184

\begin{align*} y^{\prime }&=-1+{\mathrm e}^{y} \\ \end{align*}

[_quadrature]

0.970

1185

\begin{align*} y^{\prime }&=-1+{\mathrm e}^{-y} \\ \end{align*}

[_quadrature]

0.959

1186

\begin{align*} y^{\prime }&=-\frac {2 \arctan \left (y\right )}{1+y^{2}} \\ \end{align*}

[_quadrature]

3.625

1187

\begin{align*} y^{\prime }&=-k \left (y-1\right )^{2} \\ \end{align*}

[_quadrature]

1.033

1188

\begin{align*} y^{\prime }&=y^{2} \left (y^{2}-1\right ) \\ \end{align*}

[_quadrature]

0.449

1189

\begin{align*} y^{\prime }&=y \left (1-y^{2}\right ) \\ \end{align*}

[_quadrature]

1.352

1190

\begin{align*} y^{\prime }&=-b \sqrt {y}+a y \\ \end{align*}

[_quadrature]

3.196

1191

\begin{align*} y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\ \end{align*}

[_quadrature]

0.600

1192

\begin{align*} y^{\prime }&=\left (1-y\right )^{2} y^{2} \\ \end{align*}

[_quadrature]

0.444

1193

\begin{align*} 3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.753

1194

\begin{align*} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.940

1195

\begin{align*} 2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

1.697

1196

\begin{align*} 2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

0.081

1197

\begin{align*} y^{\prime }&=\frac {-a x -b y}{b x +c y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.684

1198

\begin{align*} y^{\prime }&=\frac {-a x +b y}{b x -c y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.477

1199

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )-2 \sin \left (x \right ) y+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

7.758

1200

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

8.040