| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\frac {y}{t}+y^{\prime }&=3 \cos \left (2 t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.290 |
|
| \begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.720 |
|
| \begin{align*}
2 y+y^{\prime } t&=\sin \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.421 |
|
| \begin{align*}
2 t y+y^{\prime }&=2 t \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.818 |
|
| \begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.051 |
|
| \begin{align*}
y+2 y^{\prime }&=3 t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.180 |
|
| \begin{align*}
-y+y^{\prime } t&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.788 |
|
| \begin{align*}
y+y^{\prime }&=5 \sin \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.456 |
|
| \begin{align*}
y+2 y^{\prime }&=3 t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.280 |
|
| \begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{2 t} t \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.412 |
|
| \begin{align*}
2 y+y^{\prime }&=t \,{\mathrm e}^{-2 t} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.671 |
|
| \begin{align*}
2 y+y^{\prime } t&=t^{2}-t +1 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| \begin{align*}
\frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| \begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.984 |
|
| \begin{align*}
2 y+y^{\prime } t&=\sin \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.712 |
|
| \begin{align*}
4 t^{2} y+t^{3} y^{\prime }&={\mathrm e}^{-t} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.691 |
|
| \begin{align*}
\left (1+t \right ) y+y^{\prime } t&=t \\
y \left (\ln \left (2\right )\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.262 |
|
| \begin{align*}
-\frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.499 |
|
| \begin{align*}
-y+2 y^{\prime }&={\mathrm e}^{\frac {t}{3}} \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.116 |
|
| \begin{align*}
-2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.337 |
|
| \begin{align*}
\left (1+t \right ) y+y^{\prime } t&=2 t \,{\mathrm e}^{-t} \\
y \left (1\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.017 |
|
| \begin{align*}
2 y+y^{\prime } t&=\frac {\sin \left (t \right )}{t} \\
y \left (-\frac {\pi }{2}\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.750 |
|
| \begin{align*}
y \cos \left (t \right )+\sin \left (t \right ) y^{\prime }&={\mathrm e}^{t} \\
y \left (1\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
68.983 |
|
| \begin{align*}
\frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.564 |
|
| \begin{align*}
\frac {2 y}{3}+y^{\prime }&=1-\frac {t}{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.790 |
|
| \begin{align*}
\frac {y}{4}+y^{\prime }&=3+2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| \begin{align*}
-y+y^{\prime }&=1+3 \sin \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.524 |
|
| \begin{align*}
-\frac {3 y}{2}+y^{\prime }&=2 \,{\mathrm e}^{t}+3 t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.821 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.565 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{\left (x^{3}+1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| \begin{align*}
\sin \left (x \right ) y^{2}+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.220 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x^{2}-1}{3+2 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.034 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.072 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.056 |
|
| \begin{align*}
y^{\prime }&=\frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.769 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.302 |
|
| \begin{align*}
y^{\prime }&=\left (1-2 x \right ) y^{2} \\
y \left (0\right ) &= -{\frac {1}{6}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.372 |
|
| \begin{align*}
y^{\prime }&=\frac {1-2 x}{y} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.647 |
|
| \begin{align*}
x +y y^{\prime } {\mathrm e}^{-x}&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}}{x} \\
r \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.872 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x}{y+x^{2} y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
y^{\prime }&=\frac {x y^{2}}{\sqrt {x^{2}+1}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.329 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x}{1+2 y} \\
y \left (2\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.203 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (x^{2}+1\right )}{4 y^{3}} \\
y \left (0\right ) &= -\frac {\sqrt {2}}{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.796 |
|
| \begin{align*}
y^{\prime }&=\frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.742 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.089 |
|
| \begin{align*}
\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime }&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
44.329 |
|
| \begin{align*}
\sqrt {-x^{2}+1}\, y^{2} y^{\prime }&=\arcsin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.355 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x^{2}+1}{-6 y+3 y^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
1.876 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x^{2}}{-4+3 y^{2}} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
1.597 |
|
| \begin{align*}
y^{\prime }&=2 y^{2}+x y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.413 |
|
| \begin{align*}
y^{\prime }&=\frac {2-{\mathrm e}^{x}}{3+2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.996 |
|
| \begin{align*}
y^{\prime }&=\frac {2 \cos \left (2 x \right )}{3+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.261 |
|
| \begin{align*}
y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.734 |
|
| \begin{align*}
y^{\prime }&=\frac {t \left (4-y\right ) y}{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.909 |
|
| \begin{align*}
y^{\prime }&=\frac {t y \left (4-y\right )}{1+t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.530 |
|
| \begin{align*}
y^{\prime }&=\frac {a y+b}{d +c y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.550 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.059 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+3 y^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.650 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y-3 x}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.997 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 x +3 y}{2 x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
16.957 |
|
| \begin{align*}
y^{\prime }&=\frac {x +3 y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.174 |
|
| \begin{align*}
x^{2}+3 y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.829 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-3 y^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.704 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2}-x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
133.943 |
|
| \begin{align*}
y \ln \left (t \right )+\left (t -3\right ) y^{\prime }&=2 t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
2.512 |
|
| \begin{align*}
y+\left (t -4\right ) t y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.049 |
|
| \begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\sin \left (t \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.796 |
|
| \begin{align*}
2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\
y \left (-3\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.207 |
|
| \begin{align*}
2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\
y \left (1\right ) &= -3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.037 |
|
| \begin{align*}
y+\ln \left (t \right ) y^{\prime }&=\cot \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
1.937 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+1}{3 y-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.618 |
|
| \begin{align*}
y^{\prime }&=\frac {\cot \left (t \right ) y}{1+y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.513 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 t}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.546 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.847 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.903 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.528 |
|
| \begin{align*}
y^{\prime }&=t \left (3-y\right ) y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.832 |
|
| \begin{align*}
y^{\prime }&=y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.849 |
|
| \begin{align*}
y^{\prime }&=-y \left (3-t y\right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.799 |
|
| \begin{align*}
y^{\prime }&=t -1-y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
2.720 |
|
| \begin{align*}
y^{\prime }&=a y+b y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.557 |
|
| \begin{align*}
y^{\prime }&=y \left (y-2\right ) \left (y-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.075 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
y^{\prime }&=-1+{\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.959 |
|
| \begin{align*}
y^{\prime }&=-\frac {2 \arctan \left (y\right )}{1+y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.625 |
|
| \begin{align*}
y^{\prime }&=-k \left (y-1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (y^{2}-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.352 |
|
| \begin{align*}
y^{\prime }&=-b \sqrt {y}+a y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.196 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| \begin{align*}
y^{\prime }&=\left (1-y\right )^{2} y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
3+2 x +\left (-2+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.753 |
|
| \begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
8.940 |
|
| \begin{align*}
2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
1.697 |
|
| \begin{align*}
2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.081 |
|
| \begin{align*}
y^{\prime }&=\frac {-a x -b y}{b x +c y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.684 |
|
| \begin{align*}
y^{\prime }&=\frac {-a x +b y}{b x -c y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
6.477 |
|
| \begin{align*}
{\mathrm e}^{x} \sin \left (y\right )-2 \sin \left (x \right ) y+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
7.758 |
|
| \begin{align*}
{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✗ |
✗ |
✗ |
✗ |
8.040 |
|