# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3 = 0
\] |
[_rational, _Riccati] |
✓ |
3.087 |
|
\[
{}\left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8 = 0
\] |
[_rational, _Riccati] |
✓ |
3.417 |
|
\[
{}x^{2} \left (y^{\prime }+y^{2}\right )+y x +x^{2}-\frac {1}{4} = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
1.593 |
|
\[
{}x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
2.673 |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.446 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.269 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.225 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.583 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.049 |
|
\[
{}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.733 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.318 |
|
\[
{}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.638 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.100 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.623 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.152 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
8.465 |
|
\[
{}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.315 |
|
\[
{}2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.639 |
|
\[
{}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.713 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.657 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
6.351 |
|
\[
{}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
7.080 |
|
\[
{}\sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y = {\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.930 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.684 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.944 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.782 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.009 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = x^{{3}/{2}}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.920 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.426 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.915 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.845 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 \left (x -1\right )^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.576 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.777 |
|
\[
{}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.568 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.709 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.503 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
3.188 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = -2 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.239 |
|
\[
{}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.096 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.837 |
|
\[
{}\left (3 x^{2}+1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.481 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }+\left (2-3 x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.473 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.463 |
|
\[
{}\left (3 x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.766 |
|
\[
{}x y^{\prime \prime }+\left (4+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.526 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -3 y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.510 |
|
\[
{}\left (2-x \right ) y^{\prime \prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.719 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }+2 \left (x -1\right )^{2} y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.442 |
|
\[
{}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.711 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.536 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (-x^{2}-6 x +1\right ) y^{\prime }+\left (x^{2}+6 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.032 |
|
\[
{}x^{2} \left (1+3 x \right ) y^{\prime \prime }+x \left (x^{2}+12 x +2\right ) y^{\prime }+2 x \left (x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.654 |
|
\[
{}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.996 |
|
\[
{}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.594 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.795 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.330 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.349 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.386 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.401 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x +\frac {y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.390 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0
\] |
[_Gegenbauer] |
✓ |
0.381 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.398 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.321 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.350 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.356 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.361 |
|
\[
{}\left (8 x^{2}+1\right ) y^{\prime \prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.338 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.357 |
|
\[
{}y^{\prime \prime }-\left (x -3\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.344 |
|
\[
{}\left (2 x^{2}-4 x +1\right ) y^{\prime \prime }+10 \left (x -1\right ) y^{\prime }+6 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.422 |
|
\[
{}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.413 |
|
\[
{}\left (3 x^{2}+6 x +5\right ) y^{\prime \prime }+9 \left (x +1\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.410 |
|
\[
{}\left (x^{2}-4\right ) y^{\prime \prime }-y^{\prime } x -3 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.339 |
|
\[
{}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.327 |
|
\[
{}\left (3 x^{2}-6 x +5\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.805 |
|
\[
{}\left (4 x^{2}-24 x +37\right ) y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.359 |
|
\[
{}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.797 |
|
\[
{}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.405 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.776 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.382 |
|
\[
{}y^{\prime \prime }-y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.253 |
|
\[
{}\left (-2 x^{3}+1\right ) y^{\prime \prime }-10 x^{2} y^{\prime }-8 y x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.822 |
|
\[
{}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.402 |
|
\[
{}\left (-2 x^{3}+1\right ) y^{\prime \prime }+6 x^{2} y^{\prime }+24 y x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.380 |
|
\[
{}\left (-x^{3}+1\right ) y^{\prime \prime }+15 x^{2} y^{\prime }-36 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.406 |
|
\[
{}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.382 |
|
\[
{}y^{\prime \prime }+x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.259 |
|
\[
{}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.315 |
|
\[
{}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.838 |
|
\[
{}\left (-x^{6}+1\right ) y^{\prime \prime }-12 x^{5} y^{\prime }-30 x^{4} y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.372 |
|
\[
{}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.334 |
|
\[
{}\left (1+3 x \right ) y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.372 |
|
\[
{}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+8 x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.412 |
|
\[
{}\left (-2 x^{2}+1\right ) y^{\prime \prime }+\left (2-6 x \right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.404 |
|
\[
{}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.460 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.816 |
|
\[
{}\left (x^{2}+3 x +3\right ) y^{\prime \prime }+\left (6+4 x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.425 |
|
\[
{}\left (x +4\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.823 |
|
\[
{}\left (2 x^{2}-3 x +2\right ) y^{\prime \prime }-\left (4-6 x \right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.444 |
|
\[
{}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.467 |
|