2.3.5 first order ode homogC

Table 2.405: first order ode homogC

#

ODE

CAS classification

Solved?

120

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

121

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

208

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

744

\[ {}y^{\prime } = \sqrt {x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

745

\[ {}y^{\prime } = \left (4 x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1619

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3468

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3672

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

3673

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4246

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4650

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4659

\[ {}y^{\prime } = \left (3+x -4 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4660

\[ {}y^{\prime } = \left (1+4 x +9 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

5882

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

7414

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

9044

\[ {}y^{\prime } = \sqrt {1+6 x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9045

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9046

\[ {}y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9047

\[ {}y^{\prime } = \left (a +b x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9048

\[ {}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9049

\[ {}y^{\prime } = \left (a +b x +c y\right )^{6} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9130

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

10033

\[ {}y^{\prime }-\left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _Riccati]

12844

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

13059

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

13097

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

15112

\[ {}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15162

\[ {}y^{\prime } = \sqrt {x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

15185

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

15957

\[ {}y^{\prime } = \left (x +y-4\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

18114

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

18564

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

19131

\[ {}y^{\prime } = \left (4 x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]