# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = 2 x +1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (-2+x \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\sqrt {x +2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {x^{2}+9}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {10}{x^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (2 x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 x +1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (-2+x \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\sqrt {x +2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \sqrt {x^{2}+9}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {10}{x^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (2 x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -x \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \ln \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -x \,{\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \sin \left (x^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 1-\sin \left (2 t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x = {y^{\prime }}^{2}+y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \,{\mathrm e}^{3 x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \arcsin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t^{2}+3
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t \,{\mathrm e}^{2 t}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (3 t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (t \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{t^{2}+4}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \ln \left (t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {t}{\sqrt {t}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t \,{\mathrm e}^{2 t}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (t \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+\frac {m}{x} = \ln \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{{2}/{3}}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x^{2} \ln \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-x^{5}+\sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x +\frac {1}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a f \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {X Y}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = \sqrt {a^{2}-x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +a \right ) y^{\prime } = b x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X}+\sqrt {Y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X} = \sqrt {Y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X}+\sqrt {Y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sqrt {X} = \sqrt {Y}
\] |
[_quadrature] |
✓ |
|
\[
{}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = a \,x^{n}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+x y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 x y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a x y^{\prime } = b c \,x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+y^{\prime } y = \left (x +y\right ) x
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 {y^{\prime }}^{2} = 9 x
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2} = a
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2} = -x^{2}+a
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2} = a^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{3} {y^{\prime }}^{2} = a
\] |
[_quadrature] |
✓ |
|
\[
{}4 x \left (-x +a \right ) \left (b -x \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} = b x +a
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} = a \,x^{n}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 {y^{\prime }}^{3}+4 y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {1+{y^{\prime }}^{2}} = x y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\sin \left (y^{\prime }\right )+y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\ln \left (y^{\prime }\right )+x y^{\prime }+a = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {1-x}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}x = a y^{\prime }+b {y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} \left (-x^{2}+1\right )+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y y^{\prime }-x y = y
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = x^{2}+2 x -3
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4
\] |
[_quadrature] |
✓ |
|
\[
{}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime }+t = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \left (y^{\prime }+y\right ) = \left (x +y\right ) x
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = 4 x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 x}-x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \arcsin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-3 x +2\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \ln \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (x^{2}-4\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x +1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1+\frac {\sec \left (x \right )}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {y^{\prime }}{x +y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {y^{\prime }}{x} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = a x
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = a
\] |
[_quadrature] |
✓ |
|
\[
{}c y^{\prime } = a x
\] |
[_quadrature] |
✓ |
|
\[
{}a \sin \left (x \right ) y x y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}5 y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\pi y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}f \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y \sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\pi y \sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \sin \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \sin \left (x \right ) {y^{\prime }}^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{n} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{n} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{3} {y^{\prime \prime }}^{2}+y^{\prime } y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y^{\prime }+b x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
|
\[
{}2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
|
\[
{}y^{\prime } = f \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}4 {y^{\prime }}^{2} = 9 x
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = t \cos \left (t^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {t +1}{\sqrt {t}}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = t \,{\mathrm e}^{-2 t}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {1}{t \ln \left (t \right )}
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \sin \left (t \right )+\cos \left (t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}u^{\prime } = 4 t \ln \left (t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}z^{\prime } = x \,{\mathrm e}^{-2 x}
\] |
[_quadrature] |
✓ |
|
\[
{}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \sec \left (t \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x -\frac {1}{3} x^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 2 \sin \left (t \right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x V^{\prime } = x^{2}+1
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2}+{y^{\prime }}^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x = {y^{\prime }}^{3}-y^{\prime }+2
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y = y^{\prime } y+y^{\prime }-{y^{\prime }}^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime }-\sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x^{6}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x -1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 x +1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x +\frac {1}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x -1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x -1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}-1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \tan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x -1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t^{2}+t
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t^{2}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -t^{2}+2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t^{2}-2
\] |
[_quadrature] |
✓ |
|
\[
{}\theta ^{\prime } = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t^{2} \left (t^{2}+1\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3-\sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = \arcsin \left (x^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 x^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 20 \,{\mathrm e}^{-4 x}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime }+\sqrt {x} = 2
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {4+x}\, y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \cos \left (x^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right ) x
\] |
[_quadrature] |
✓ |
|
\[
{}x = \left (x^{2}-9\right ) y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}1 = \left (x^{2}-9\right ) y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}1 = x^{2}-9 y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 40 x \,{\mathrm e}^{2 x}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x -1}{x +1}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime }+2 = \sqrt {x}
\] |
[_quadrature] |
✓ |
|
\[
{}\cos \left (x \right ) y^{\prime }-\sin \left (x \right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (\frac {x}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (\frac {x}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (\frac {x}{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 \sqrt {x +3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 \sqrt {x +3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 \sqrt {x +3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 3 \sqrt {x +3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-9 x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = \sin \left (x^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right .
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right .
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right .
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }-{\mathrm e}^{2 x} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} y^{\prime }-\sqrt {x} = 3
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-4\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +2\right ) y^{\prime }-x^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+2 x = \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}2 x -1-y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \sin \left (x^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x \ln \left (x \right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \ln \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}-16}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right ) \cot \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 4 x^{3}-x +2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {\ln \left (x \right )}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right )^{4}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{-x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right ) x^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{t^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \cos \left (t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\sin \left (y \right )^{2} = x^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = t \sin \left (t^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}3 t^{2}-y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x +1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1-x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x}
\] |
[_quadrature] |
✓ |
|
\[
{}\cos \left (y^{\prime }\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y^{\prime }} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\sin \left (y^{\prime }\right ) = x
\] |
[_quadrature] |
✓ |
|
\[
{}\ln \left (y^{\prime }\right ) = x
\] |
[_quadrature] |
✓ |
|
\[
{}\tan \left (y^{\prime }\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{\mathrm e}^{y^{\prime }} = x
\] |
[_quadrature] |
✓ |
|
\[
{}\tan \left (y^{\prime }\right ) = x
\] |
[_quadrature] |
✓ |
|
\[
{}4 {y^{\prime }}^{2}-9 x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y
\] |
[_quadrature] |
✓ |
|
\[
{}x = {y^{\prime }}^{2}-2 y^{\prime }+2
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}}
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a
\] |
[_quadrature] |
✓ |
|
\[
{}x = \sin \left (y^{\prime }\right )+y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2}+x y^{\prime } = 3 x +y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = -\frac {1}{\ln \left (x \right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = -x^{3}
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{3} = 1+y^{\prime }
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 x
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 x}-x
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \arcsin \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{3}+1\right ) y^{\prime } = x
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } \sin \left (x \right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \ln \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (x^{2}-4\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x
\] |
[_quadrature] |
✓ |
|
\[
{}x y^{\prime } = 2 x^{2}+1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = 3 t^{2}+4 t
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = b \,{\mathrm e}^{t}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {1}{t^{2}+1}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}}
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \cos \left (t \right )
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{z -y^{\prime }}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k}
\] |
[_quadrature] |
✓ |
|
\[
{}\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-a \,x^{3} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3} = a \,x^{4}
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (1+{y^{\prime }}^{2}\right ) = 1
\] |
[_quadrature] |
✓ |
|
\[
{}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right )
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0
\] |
[_quadrature] |
✓ |
|