2.4.18 second order ode non constant coeff transformation on B

Table 2.409: second order ode non constant coeff transformation on B

#

ODE

CAS classification

Solved?

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

227

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

229

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

262

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

381

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

819

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

821

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

907

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1347

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1348

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1351

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1353

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1354

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1750

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1816

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1832

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1835

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1838

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = -2 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1839

\[ {}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

3163

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3183

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3186

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3426

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

3501

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3508

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

5550

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

5553

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5559

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

5575

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

5586

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5752

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler]]

5757

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5775

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

5779

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

5809

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

5811

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5813

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5972

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

6093

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6101

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6135

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6311

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6314

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6317

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

6318

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

6329

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6332

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \frac {-x^{2}+1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

6335

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6715

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6720

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6727

\[ {}x y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

6728

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6729

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6730

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6731

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6733

\[ {}x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y = x \left (1-\ln \left (x \right )\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6736

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6763

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6910

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

6911

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

6912

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6936

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

7000

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7147

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7172

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7236

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7238

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7239

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7240

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

7303

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7598

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

7732

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

7733

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

7738

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

[[_2nd_order, _missing_y]]

7745

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

7842

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

7995

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

7998

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

7999

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8364

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

10271

\[ {}y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10321

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

10339

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

10387

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10393

\[ {}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10394

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10402

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10453

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10455

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10478

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10513

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

10526

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0 \]

[_Gegenbauer]

10655

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

10668

\[ {}y^{\prime \prime } = -\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

11746

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11898

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11965

\[ {}x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11983

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12189

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12190

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12191

\[ {}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12240

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

12265

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

12392

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

12616

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12746

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

12747

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12750

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12753

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

12776

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12781

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12961

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

12965

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13081

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

13152

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13158

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13165

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13323

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

13392

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

13472

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13482

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

13644

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

13645

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

13650

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

13654

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14371

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

14372

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

14399

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

14405

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14406

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

14411

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

14464

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14466

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14544

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14562

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14668

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

14675

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

14681

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14688

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14703

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

14725

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

14740

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15346

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15351

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15402

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

15403

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

15527

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15604

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

15605

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

15633

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15661

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

15768

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

16082

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16083

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16085

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16086

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16279

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16282

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16283

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16284

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16293

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16298

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

16299

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

16320

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

16321

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

[[_2nd_order, _missing_y]]

16357

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]