2.2.198 Problems 19701 to 19800

Table 2.409: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

19701

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.953

19702

\begin{align*} x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.869

19703

\begin{align*} y^{\prime }+c y&=a \\ \end{align*}

[_quadrature]

0.758

19704

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.051

19705

\begin{align*} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.643

19706

\begin{align*} y^{\prime }&=\frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \\ \end{align*}

[_separable]

7.208

19707

\begin{align*} v^{\prime \prime }&=\left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \\ \end{align*}

[[_2nd_order, _missing_x]]

6.285

19708

\begin{align*} v^{\prime }+u^{2} v&=\sin \left (u \right ) \\ \end{align*}

[_linear]

1.900

19709

\begin{align*} \sqrt {y^{\prime }+y}&=\left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \\ \end{align*}

[NONE]

2.279

19710

\begin{align*} v^{\prime }+\frac {2 v}{u}&=3 \\ \end{align*}

[_linear]

3.480

19711

\begin{align*} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

4.055

19712

\begin{align*} y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.671

19713

\begin{align*} -y^{\prime } x +y&=b \left (1+x^{2} y^{\prime }\right ) \\ \end{align*}

[_separable]

2.536

19714

\begin{align*} x^{\prime }&=k \left (A -n x\right ) \left (M -m x\right ) \\ \end{align*}

[_quadrature]

11.467

19715

\begin{align*} y^{\prime }&=1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )} \\ \end{align*}

[_separable]

2.054

19716

\begin{align*} y^{2}&=x \left (-x +y\right ) y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

11.749

19717

\begin{align*} 2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

64.694

19718

\begin{align*} 2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime }&=g \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.295

19719

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right )&=0 \\ \end{align*}

[_separable]

30.006

19720

\begin{align*} y y^{\prime }+x&=m y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

36.171

19721

\begin{align*} \frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7.188

19722

\begin{align*} \left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime }&=\frac {T}{t \sqrt {t^{2}-T^{2}}}-t \\ \end{align*}

[_exact]

5.038

19723

\begin{align*} y^{\prime }+y x&=x \\ \end{align*}

[_separable]

2.141

19724

\begin{align*} y^{\prime }+\frac {y}{x}&=\sin \left (x \right ) \\ \end{align*}

[_linear]

1.687

19725

\begin{align*} y^{\prime }+\frac {y}{x}&=\frac {\sin \left (x \right )}{y^{3}} \\ \end{align*}

[_Bernoulli]

27.090

19726

\begin{align*} p^{\prime }&=\frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \\ \end{align*}

[_linear]

2.592

19727

\begin{align*} \left (T \ln \left (t \right )-1\right ) T&=t T^{\prime } \\ \end{align*}

[_Bernoulli]

4.783

19728

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

[_linear]

2.602

19729

\begin{align*} y-\cos \left (x \right ) y^{\prime }&=y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \\ \end{align*}

[_Bernoulli]

6.196

19730

\begin{align*} x {y^{\prime }}^{2}+2 y^{\prime }-y&=0 \\ \end{align*}

[_rational, _dAlembert]

1.733

19731

\begin{align*} 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\ \end{align*}

[_quadrature]

0.568

19732

\begin{align*} y^{\prime }&={\mathrm e}^{z -y^{\prime }} \\ \end{align*}

[_quadrature]

0.261

19733

\begin{align*} \sqrt {t^{2}+T}&=T^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘]]

9.041

19734

\begin{align*} {y^{\prime }}^{2} \left (x^{2}-1\right )&=1 \\ \end{align*}

[_quadrature]

0.434

19735

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.530

19736

\begin{align*} \theta ^{\prime \prime }&=-p^{2} \theta \\ \end{align*}

[[_2nd_order, _missing_x]]

5.483

19737

\begin{align*} \sec \left (\theta \right )^{2}&=\frac {m s^{\prime }}{k} \\ \end{align*}

[_quadrature]

0.296

19738

\begin{align*} y^{\prime \prime }&=\frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \\ \end{align*}

[[_2nd_order, _missing_x]]

45.694

19739

\begin{align*} \phi ^{\prime \prime }&=\frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

42.262

19740

\begin{align*} y^{\prime }&=x \left (a y^{2}+b \right ) \\ \end{align*}

[_separable]

3.646

19741

\begin{align*} n^{\prime }&=\left (n^{2}+1\right ) x \\ \end{align*}

[_separable]

2.703

19742

\begin{align*} v^{\prime }+\frac {2 v}{u}&=3 v \\ \end{align*}

[_separable]

1.663

19743

\begin{align*} \sqrt {-u^{2}+1}\, v^{\prime }&=2 u \sqrt {1-v^{2}} \\ \end{align*}

[_separable]

3.986

19744

\begin{align*} \sqrt {1+v^{\prime }}&=\frac {{\mathrm e}^{u}}{2} \\ \end{align*}

[_quadrature]

0.369

19745

\begin{align*} \frac {y^{\prime }}{x}&=y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \\ \end{align*}

[_separable]

4.352

19746

\begin{align*} y^{\prime }&=1+\frac {2 y}{x -y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.915

19747

\begin{align*} v^{\prime }+2 u v&=2 u \\ \end{align*}

[_separable]

2.267

19748

\begin{align*} 1+v^{2}+\left (u^{2}+1\right ) v v^{\prime }&=0 \\ \end{align*}

[_separable]

4.327

19749

\begin{align*} u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2}&=1 \\ \end{align*}

[_separable]

4.964

19750

\begin{align*} \theta ^{\prime \prime }-p^{2} \theta &=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.929

19751

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.345

19752

\begin{align*} y^{\prime \prime }+12 y&=7 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

3.757

19753

\begin{align*} r^{\prime \prime }-a^{2} r&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.012

19754

\begin{align*} y^{\prime \prime \prime \prime }-a^{4} y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.053

19755

\begin{align*} v^{\prime \prime }-6 v^{\prime }+13 v&={\mathrm e}^{-2 u} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.115

19756

\begin{align*} y^{\prime \prime }+4 y^{\prime }-y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.338

19757

\begin{align*} y^{\prime \prime }+3 y&=\sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.174

19758

\begin{align*} 5 x^{\prime }+x&=\sin \left (3 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.883

19759

\begin{align*} x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_high_order, _missing_y]]

0.128

19760

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 y^{\prime } x&=17 x^{6} \\ \end{align*}

[[_high_order, _missing_y]]

0.398

19761

\begin{align*} t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x&=\cos \left (3 \ln \left (t \right )\right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.862

19762

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.068

19763

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_high_order, _missing_y]]

0.127

19764

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.474

19765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6.201

19766

\begin{align*} y^{\prime \prime }&=c \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

14.253

19767

\begin{align*} y^{\prime \prime }&=c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

63.816

19768

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.174

19769

\begin{align*} y^{\prime \prime }&=-m^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

5.108

19770

\begin{align*} 1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

54.683

19771

\begin{align*} y&=y^{\prime } x +y^{\prime }-{y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.502

19772

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=y x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.798

19773

\begin{align*} y-2 y^{\prime } x -y {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.455

19774

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\ \end{align*}

[_linear]

1.770

19775

\begin{align*} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.357

19776

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.168

19777

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.371

19778

\begin{align*} v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

9.595

19779

\begin{align*} y^{\prime \prime }-2 y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.288

19780

\begin{align*} y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.773

19781

\begin{align*} \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=r y^{\prime \prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

67.214

19782

\begin{align*} y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5}&=0 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

0.231

19783

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime }&=y^{2} \left (1+y^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

13.201

19784

\begin{align*} y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 y y^{\prime } x +3 y^{2} x^{2}\right ) y^{\prime }+x^{3} y^{3}&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.048

19785

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.275

19786

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

2.512

19787

\begin{align*} x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.166

19788

\begin{align*} v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.478

19789

\begin{align*} y^{\prime }+\frac {y}{x}&=-x^{2}+1 \\ \end{align*}

[_linear]

2.150

19790

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\csc \left (x \right )^{2} \\ \end{align*}

[_linear]

1.954

19791

\begin{align*} y^{\prime }&=x -y \\ \end{align*}

[[_linear, ‘class A‘]]

1.082

19792

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+x^{2} y&=x^{3}-x^{2} \arctan \left (x \right ) \\ \end{align*}

[_linear]

3.084

19793

\begin{align*} y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\ \end{align*}

[_linear]

1.624

19794

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y&=x^{3} \\ \end{align*}

[_linear]

2.188

19795

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=\frac {\sin \left (2 x \right )}{2} \\ \end{align*}

[_linear]

2.635

19796

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=a \,x^{3} \\ \end{align*}

[_linear]

2.835

19797

\begin{align*} y^{\prime }+\sin \left (x \right ) y&=\sin \left (x \right ) y^{2} \\ \end{align*}

[_separable]

5.169

19798

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-y x&=a x y^{2} \\ \end{align*}

[_separable]

6.611

19799

\begin{align*} y^{\prime }+\cos \left (x \right ) y&=y^{n} \sin \left (2 x \right ) \\ \end{align*}

[_Bernoulli]

7.407

19800

\begin{align*} 3 y^{2} y^{\prime }+y^{3}&=x -1 \\ \end{align*}

[_rational, _Bernoulli]

3.010