2.3.25 first order ode constant coeff using laplace

Table 2.445: first order ode constant coeff using laplace

#

ODE

CAS classification

Solved?

3928

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]
i.c.

[[_linear, ‘class A‘]]

3929

\[ {}y^{\prime }+y = 8 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

3930

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

3931

\[ {}y^{\prime }+2 y = 4 t \]
i.c.

[[_linear, ‘class A‘]]

3932

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3933

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3934

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3956

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3957

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]
i.c.

[[_linear, ‘class A‘]]

3958

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_linear, ‘class A‘]]

3959

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

3960

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3961

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3962

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]
i.c.

[[_linear, ‘class A‘]]

3971

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3972

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

3973

\[ {}y^{\prime }+y = \delta \left (t -5\right ) \]
i.c.

[[_linear, ‘class A‘]]

3974

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

3975

\[ {}y^{\prime }+4 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

3976

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]
i.c.

[[_linear, ‘class A‘]]

6543

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

6544

\[ {}y^{\prime }+2 y = 2 \]
i.c.

[_quadrature]

6545

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

7347

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

7348

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

7359

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

8170

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8171

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8172

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8324

\[ {}y^{\prime }-y = 1 \]
i.c.

[_quadrature]

8325

\[ {}2 y^{\prime }+y = 0 \]
i.c.

[_quadrature]

8326

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

8327

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8334

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8336

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

8337

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

8348

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8349

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8350

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

8356

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8357

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

8365

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

8366

\[ {}y^{\prime }+y = \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

13184

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13185

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13193

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

13195

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

13196

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

13200

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

13644

\[ {}y^{\prime }-y = {\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

13645

\[ {}y^{\prime }+y = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14053

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

14057

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

14059

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

14060

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]
i.c.

[[_linear, ‘class A‘]]

14080

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

14521

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

14523

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

14528

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

14529

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

14535

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

14536

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

14543

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

14550

\[ {}y^{\prime }+3 y = \delta \left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

14551

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

15585

\[ {}y^{\prime }+4 y = 0 \]
i.c.

[_quadrature]

15586

\[ {}y^{\prime }-2 y = t^{3} \]
i.c.

[[_linear, ‘class A‘]]

15587

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]
i.c.

[[_linear, ‘class A‘]]

15620

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

15621

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[_quadrature]

15625

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]
i.c.

[_quadrature]

15628

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]
i.c.

[_quadrature]

15629

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]
i.c.

[_quadrature]

15632

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

15635

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

17283

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

17284

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]
i.c.

[[_linear, ‘class A‘]]

17285

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17286

\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]
i.c.

[[_linear, ‘class A‘]]

17287

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

18452

\[ {}y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]