2.3.26 first order ode flip role

Table 2.445: first order ode flip role

#

ODE

ODE classification

Solved?

3002

1+xy(xy2+1)y=0
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4391

2yxy=yln(yy)

[[_1st_order, _with_linear_symmetries]]

4409

y=1xy+x3y3

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5248

x(x33x3y+4y2)y=6y3

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5302

(x+2y+2x2y3+xy4)y+(1+y4)y=0

[_rational]

5392

y2yy+ex=0

[[_1st_order, _with_linear_symmetries]]

5495

(x2+1)y2+2xyy+4x2=0

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5542

xyy2+(a+x2y2)yxy=0

[_rational]

7779

yx+y=y1x2y2

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10328

(x2y3+xy)y1=0

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10335

(x+2y+2x2y3+xy4)y+y5+y=0

[_rational]

10486

axyy2(ay2+bx2+c)y+bxy=0

[_rational]

10698

y=1x(xy2+1+x)y

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10768

y=2y6y3+2+16xy2+32x2y4

[_rational]

10834

y=y(xy)(1+y)x(xy+xy)

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10841

y=y(x+y)(1+y)x(xy+x+y)

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

10907

y=(ln(y)x+cos(x)ln(y)sin(x)_F1(x))y

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10914

y=2y8y5+2y6+2y2+16xy4+32y6x2+2+24xy2+96x2y4+128x3y6

[_rational]

10917

y=(ln(y)x+ln(y)xln(x)_F1(x))y

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10920

y=(ln(y)22x_F1(x))yln(y)

[NONE]

10944

y=216y216y4252y3396y2216y+36x272xy+60y536xy372xy224xy4+4y8+12y7+33y6

[_rational]

10962

y=1296y216216x2y4+216xy2648x2y1728y3324x2y3432xy570y8846y7126y10315y98y1236y112376y2+72y8x1944y4612y5+1080xy3648x2y2+216y7x+1080y5x+594xy6+1152xy4882y6+216x2+216x31296y

[_rational]

14132

(x2y3+xy)y=1

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16753

y2yy+ex=0

[[_1st_order, _with_linear_symmetries]]

16793

y2yy+ex=0

[[_1st_order, _with_linear_symmetries]]

17842

(x2y3+xy)y=1

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17898

y2yy+ex=0

[[_1st_order, _with_linear_symmetries]]

17991

yx+y=y1x2y2

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18717

(x2y3+xy)y=1

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

19236

xyy2(x2+y21)y+xy=0

[_rational]