| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=-2 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}-2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
x_{1}^{\prime }&=a x_{1}+5 x_{3} \\
x_{2}^{\prime }&=-x_{2}-2 x_{3} \\
x_{3}^{\prime }&=-3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}-2 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{2}-x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
6.585 |
|
| \begin{align*}
x_{1}^{\prime }&=a x_{1} \\
x_{2}^{\prime }&=a x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}+a x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}+x_{4} \\
x_{2}^{\prime }&=-x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{2}+x_{3} \\
x_{4}^{\prime }&=x_{1}-x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.119 |
|
| \begin{align*}
x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=x_{3} \\
x_{3}^{\prime }&=-a x_{3}-b x_{2}-c x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
19.907 |
|
| \begin{align*}
x^{\prime \prime \prime }+x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.038 |
|
| \begin{align*}
x^{\prime \prime \prime }-x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.039 |
|
| \begin{align*}
x^{\prime \prime \prime }+5 x^{\prime \prime }+9 x^{\prime }+5 x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.043 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }+x^{\prime \prime \prime }-x^{\prime }-x&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.049 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }+8 x^{\prime \prime \prime }+23 x^{\prime \prime }+2 x^{\prime }+12 x&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.070 |
|
| \begin{align*}
x^{\prime }&=\lambda x-x^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.365 |
|
| \begin{align*}
x^{\prime }&=\lambda x-x^{3}-x^{5} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.720 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=-2 x_{2} \\
x_{3}^{\prime }&=x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
x^{\prime }&=-x+y+y^{2} \\
y^{\prime }&=-2 y-x^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.026 |
|
| \begin{align*}
x^{\prime }&=-x^{3} \\
y^{\prime }&=-y^{3} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.023 |
|
| \begin{align*}
x^{\prime \prime }-x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.431 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{3}&=0 \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.454 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{5}&=0 \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
1.801 |
|
| \begin{align*}
x^{\prime \prime }+\lambda x-x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✗ |
✗ |
1.937 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✓ |
✗ |
✗ |
3.290 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{3}&=0 \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.412 |
|
| \begin{align*}
-x^{\prime \prime }&=1-x-x^{2} \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✗ |
✗ |
✗ |
134.207 |
|
| \begin{align*}
-x^{\prime \prime }+x&={\mathrm e}^{-x} \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✗ |
✗ |
✗ |
2.255 |
|
| \begin{align*}
-x^{\prime \prime }+x&={\mathrm e}^{-x^{2}} \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✗ |
✗ |
✗ |
2.453 |
|
| \begin{align*}
-x^{\prime \prime }&=\frac {1}{\sqrt {x^{2}+1}}-x \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✗ |
✗ |
✗ |
2.668 |
|
| \begin{align*}
-x^{\prime \prime }&=2 x-x^{2} \\
x \left (0\right ) &= 0 \\
x \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✓ |
✗ |
✗ |
30.702 |
|
| \begin{align*}
-x^{\prime \prime }&=\arctan \left (x\right ) \\
x \left (0\right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✓ |
✗ |
✗ |
212.669 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime }&=6 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.627 |
|
| \begin{align*}
y^{\prime }&=-5 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| \begin{align*}
y^{\prime }&=f \left (x \right ) g \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.465 |
|
| \begin{align*}
-y+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| \begin{align*}
y^{\prime }-k y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.836 |
|
| \begin{align*}
y y^{\prime }+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.359 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.194 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| \begin{align*}
\sqrt {x}\, y^{\prime }+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.425 |
|
| \begin{align*}
2 x \left (1+y\right )-y y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.971 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.468 |
|
| \begin{align*}
-2+2 y+x^{2} \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.996 |
|
| \begin{align*}
y^{\prime }&=\frac {x +1}{1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.683 |
|
| \begin{align*}
y^{\prime }&=\frac {a x +b}{y^{n}+d} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.253 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (0\right ) &= a_{0} \\
\end{align*} |
[_separable] |
✓ |
✗ |
✓ |
✓ |
7.816 |
|
| \begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.052 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.672 |
|
| \begin{align*}
\cos \left (x \right ) x +\left (1-6 y^{5}\right ) y^{\prime }&=0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.946 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.708 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2} \sqrt {x^{2}+1}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.271 |
|
| \begin{align*}
y^{\prime }&=2 y x \\
y \left (0\right ) &= 5 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.256 |
|
| \begin{align*}
x y^{2}-x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y^{\prime }&=x^{2} y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.451 |
|
| \begin{align*}
y^{\prime }&=\frac {y \ln \left (x \right )}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.898 |
|
| \begin{align*}
y^{\prime }&=x^{2} y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| \begin{align*}
{\mathrm e}^{x}-y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.457 |
|
| \begin{align*}
2 x -6 y+3-\left (1+x -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.170 |
|
| \begin{align*}
2 x +y+1+\left (4 x +2 y+3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.259 |
|
| \begin{align*}
2 x +3 y-1+\left (2 x -3 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
23.005 |
|
| \begin{align*}
x +2 y-4-\left (-5+2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
21.866 |
|
| \begin{align*}
x +2 y-1+3 \left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.771 |
|
| \begin{align*}
{\mathrm e}^{-y} \left (1+y^{\prime }\right )&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.739 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.321 |
|
| \begin{align*}
x -y+\left (x -4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.896 |
|
| \begin{align*}
x^{2}-y x +y^{2}-y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.797 |
|
| \begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
6.989 |
|
| \begin{align*}
x^{2}-2 y^{2}+y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
55.469 |
|
| \begin{align*}
y x +\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.186 |
|
| \begin{align*}
y+y^{\prime } x +\frac {y^{3} \left (-y^{\prime } x +y\right )}{x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
6.204 |
|
| \begin{align*}
\left (x -4\right ) y^{4}-x^{3} \left (y^{2}-3\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.234 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.724 |
|
| \begin{align*}
x \sin \left (y\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.582 |
|
| \begin{align*}
y^{\prime }-y x&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.375 |
|
| \begin{align*}
y^{\prime }&=-\frac {{\mathrm e}^{y}}{x \,{\mathrm e}^{y}+2 y} \\
\end{align*} |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| \begin{align*}
\left (x +y^{2}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
4.766 |
|
| \begin{align*}
y^{\prime }+\frac {2 x \sin \left (y\right )+y^{3} {\mathrm e}^{x}}{\cos \left (y\right ) x^{2}+3 y^{2} {\mathrm e}^{x}}&=0 \\
\end{align*} |
[NONE] |
✓ |
✓ |
✓ |
✗ |
5.371 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+3 x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.208 |
|
| \begin{align*}
3 x \left (y x -2\right )+\left (x^{3}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.854 |
|
| \begin{align*}
3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
1.928 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
\left (x +y^{2}\right ) y^{\prime }-x^{2}+y&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
1.679 |
|
| \begin{align*}
3 x^{2}+4 y x +\left (2 x^{2}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.827 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {2 x}{y}}}{y^{2}+y^{2} {\mathrm e}^{\frac {2 x}{y}}+2 x^{2} {\mathrm e}^{\frac {2 x}{y}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
17.358 |
|
| \begin{align*}
y^{2}-x^{2}-2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.826 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.707 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.516 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-\frac {y^{2}}{x^{2}}}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
38.793 |
|
| \begin{align*}
2 y y^{\prime } x&=y^{2}-x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.601 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.517 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{y^{2}-x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.979 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.456 |
|
| \begin{align*}
x^{2}-3 y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
84.206 |
|
| \begin{align*}
y y^{\prime } x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.824 |
|
| \begin{align*}
-y+y^{\prime } x&=\sqrt {x^{2}+y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.233 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.730 |
|
| \begin{align*}
y+\sqrt {x^{2}+y^{2}}-y^{\prime } x&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.452 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
7.558 |
|
| \begin{align*}
y-x y^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.384 |
|
| \begin{align*}
y^{\prime }+\tan \left (\theta \right ) y&=\cos \left (\theta \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.817 |
|