2.2.214 Problems 21301 to 21400

Table 2.441: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21301

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=-2 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}-2 x_{3} \\ \end{align*}

system_of_ODEs

0.477

21302

\begin{align*} x_{1}^{\prime }&=a x_{1}+5 x_{3} \\ x_{2}^{\prime }&=-x_{2}-2 x_{3} \\ x_{3}^{\prime }&=-3 x_{3} \\ \end{align*}

system_of_ODEs

0.547

21303

\begin{align*} x_{1}^{\prime }&=x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}-2 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

6.585

21304

\begin{align*} x_{1}^{\prime }&=a x_{1} \\ x_{2}^{\prime }&=a x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}+a x_{3} \\ \end{align*}

system_of_ODEs

0.480

21305

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{4} \\ x_{2}^{\prime }&=-x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{2}+x_{3} \\ x_{4}^{\prime }&=x_{1}-x_{4} \\ \end{align*}

system_of_ODEs

2.119

21306

\begin{align*} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.146

21307

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=x_{3} \\ x_{3}^{\prime }&=-a x_{3}-b x_{2}-c x_{1} \\ \end{align*}

system_of_ODEs

19.907

21308

\begin{align*} x^{\prime \prime \prime }+x&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.038

21309

\begin{align*} x^{\prime \prime \prime }-x&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.039

21310

\begin{align*} x^{\prime \prime \prime }+5 x^{\prime \prime }+9 x^{\prime }+5 x&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.043

21311

\begin{align*} x^{\prime \prime \prime \prime }+x^{\prime \prime \prime }-x^{\prime }-x&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.049

21312

\begin{align*} x^{\prime \prime \prime \prime }+8 x^{\prime \prime \prime }+23 x^{\prime \prime }+2 x^{\prime }+12 x&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.070

21313

\begin{align*} x^{\prime }&=\lambda x-x^{5} \\ \end{align*}

[_quadrature]

1.365

21314

\begin{align*} x^{\prime }&=\lambda x-x^{3}-x^{5} \\ \end{align*}

[_quadrature]

0.720

21315

\begin{align*} x_{1}^{\prime }&=-x_{1} \\ x_{2}^{\prime }&=-2 x_{2} \\ x_{3}^{\prime }&=x_{3} \\ \end{align*}

system_of_ODEs

0.414

21316

\begin{align*} x^{\prime }&=-x+y+y^{2} \\ y^{\prime }&=-2 y-x^{2} \\ \end{align*}

system_of_ODEs

0.026

21317

\begin{align*} x^{\prime }&=-x^{3} \\ y^{\prime }&=-y^{3} \\ \end{align*}

system_of_ODEs

0.023

21318

\begin{align*} x^{\prime \prime }-x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.431

21319

\begin{align*} x^{\prime \prime }+4 x^{3}&=0 \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.454

21320

\begin{align*} x^{\prime \prime }+6 x^{5}&=0 \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.801

21321

\begin{align*} x^{\prime \prime }+\lambda x-x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.937

21322

\begin{align*} x^{\prime \prime }+4 x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.290

21323

\begin{align*} x^{\prime \prime }+4 x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.412

21324

\begin{align*} -x^{\prime \prime }&=1-x-x^{2} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

134.207

21325

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.255

21326

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x^{2}} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.453

21327

\begin{align*} -x^{\prime \prime }&=\frac {1}{\sqrt {x^{2}+1}}-x \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.668

21328

\begin{align*} -x^{\prime \prime }&=2 x-x^{2} \\ x \left (0\right ) &= 0 \\ x \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

30.702

21329

\begin{align*} -x^{\prime \prime }&=\arctan \left (x\right ) \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

212.669

21330

\begin{align*} y^{\prime }&=y \\ \end{align*}

[_quadrature]

0.505

21331

\begin{align*} y^{\prime }&=6 y \\ \end{align*}

[_quadrature]

0.627

21332

\begin{align*} y^{\prime }&=-5 y \\ \end{align*}

[_quadrature]

0.611

21333

\begin{align*} y^{\prime }&=f \left (x \right ) g \left (y\right ) \\ \end{align*}

[_separable]

1.465

21334

\begin{align*} -y+y^{\prime } x&=0 \\ \end{align*}

[_separable]

1.851

21335

\begin{align*} y^{\prime }-k y&=0 \\ \end{align*}

[_quadrature]

0.836

21336

\begin{align*} y y^{\prime }+x&=0 \\ \end{align*}

[_separable]

5.359

21337

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}

[_separable]

2.194

21338

\begin{align*} y^{\prime } x -2 y&=0 \\ \end{align*}

[_separable]

2.444

21339

\begin{align*} \sqrt {x}\, y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

0.425

21340

\begin{align*} 2 x \left (1+y\right )-y y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

2.692

21341

\begin{align*} y^{\prime }&=-\frac {x}{y} \\ \end{align*}

[_separable]

4.971

21342

\begin{align*} y^{\prime }&=\frac {2 y}{x} \\ \end{align*}

[_separable]

2.468

21343

\begin{align*} -2+2 y+x^{2} \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.996

21344

\begin{align*} y^{\prime }&=\frac {x +1}{1+y^{2}} \\ \end{align*}

[_separable]

1.683

21345

\begin{align*} y^{\prime }&=\frac {a x +b}{y^{n}+d} \\ \end{align*}

[_separable]

2.253

21346

\begin{align*} y^{\prime }&=-\frac {x}{y} \\ y \left (0\right ) &= a_{0} \\ \end{align*}

[_separable]

7.816

21347

\begin{align*} y^{\prime }&=x^{2} y \\ \end{align*}

[_separable]

2.052

21348

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

2.672

21349

\begin{align*} \cos \left (x \right ) x +\left (1-6 y^{5}\right ) y^{\prime }&=0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_separable]

2.946

21350

\begin{align*} y^{\prime }&=\frac {x}{y^{3}} \\ \end{align*}

[_separable]

2.708

21351

\begin{align*} y^{\prime }&=\frac {x}{y^{2} \sqrt {x^{2}+1}} \\ \end{align*}

[_separable]

2.271

21352

\begin{align*} y^{\prime }&=2 y x \\ y \left (0\right ) &= 5 \\ \end{align*}

[_separable]

2.256

21353

\begin{align*} x y^{2}-x +\left (y+x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.563

21354

\begin{align*} y^{\prime }&=x^{2} y^{3} \\ \end{align*}

[_separable]

5.451

21355

\begin{align*} y^{\prime }&=\frac {y \ln \left (x \right )}{x} \\ \end{align*}

[_separable]

2.898

21356

\begin{align*} y^{\prime }&=x^{2} y \\ \end{align*}

[_separable]

2.026

21357

\begin{align*} {\mathrm e}^{x}-y y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.457

21358

\begin{align*} 2 x -6 y+3-\left (1+x -3 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.170

21359

\begin{align*} 2 x +y+1+\left (4 x +2 y+3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.259

21360

\begin{align*} 2 x +3 y-1+\left (2 x -3 y+2\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

23.005

21361

\begin{align*} x +2 y-4-\left (-5+2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

21.866

21362

\begin{align*} x +2 y-1+3 \left (x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.771

21363

\begin{align*} {\mathrm e}^{-y} \left (1+y^{\prime }\right )&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.739

21364

\begin{align*} y^{\prime }&=\frac {x +y}{x} \\ \end{align*}

[_linear]

2.321

21365

\begin{align*} x -y+\left (x -4 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.896

21366

\begin{align*} x^{2}-y x +y^{2}-y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.797

21367

\begin{align*} y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.989

21368

\begin{align*} x^{2}-2 y^{2}+y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

55.469

21369

\begin{align*} y x +\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.186

21370

\begin{align*} y+y^{\prime } x +\frac {y^{3} \left (-y^{\prime } x +y\right )}{x}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

6.204

21371

\begin{align*} \left (x -4\right ) y^{4}-x^{3} \left (y^{2}-3\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.234

21372

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.724

21373

\begin{align*} x \sin \left (y\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

[_separable]

2.582

21374

\begin{align*} y^{\prime }-y x&=x^{2} \\ \end{align*}

[_linear]

1.375

21375

\begin{align*} y^{\prime }&=-\frac {{\mathrm e}^{y}}{x \,{\mathrm e}^{y}+2 y} \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

2.605

21376

\begin{align*} \left (x +y^{2}\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational]

4.766

21377

\begin{align*} y^{\prime }+\frac {2 x \sin \left (y\right )+y^{3} {\mathrm e}^{x}}{\cos \left (y\right ) x^{2}+3 y^{2} {\mathrm e}^{x}}&=0 \\ \end{align*}

[NONE]

5.371

21378

\begin{align*} \left (x +y\right ) y^{\prime }+3 x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.208

21379

\begin{align*} 3 x \left (y x -2\right )+\left (x^{3}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.854

21380

\begin{align*} 3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

1.928

21381

\begin{align*} y^{\prime }&=2 x \\ \end{align*}

[_quadrature]

0.355

21382

\begin{align*} \left (x +y^{2}\right ) y^{\prime }-x^{2}+y&=0 \\ \end{align*}

[_exact, _rational]

1.679

21383

\begin{align*} 3 x^{2}+4 y x +\left (2 x^{2}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.827

21384

\begin{align*} y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {2 x}{y}}}{y^{2}+y^{2} {\mathrm e}^{\frac {2 x}{y}}+2 x^{2} {\mathrm e}^{\frac {2 x}{y}}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

17.358

21385

\begin{align*} y^{2}-x^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.826

21386

\begin{align*} y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.707

21387

\begin{align*} y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.516

21388

\begin{align*} y^{\prime }&=\sqrt {1-\frac {y^{2}}{x^{2}}}+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

38.793

21389

\begin{align*} 2 y y^{\prime } x&=y^{2}-x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.601

21390

\begin{align*} x +y-\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.517

21391

\begin{align*} y^{\prime }&=\frac {2 x y}{y^{2}-x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.979

21392

\begin{align*} y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.456

21393

\begin{align*} x^{2}-3 y^{2}+2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

84.206

21394

\begin{align*} y y^{\prime } x +x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.824

21395

\begin{align*} -y+y^{\prime } x&=\sqrt {x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.233

21396

\begin{align*} y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.730

21397

\begin{align*} y+\sqrt {x^{2}+y^{2}}-y^{\prime } x&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.452

21398

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\ y \left (1\right ) &= -2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.558

21399

\begin{align*} y-x y^{2}+y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.384

21400

\begin{align*} y^{\prime }+\tan \left (\theta \right ) y&=\cos \left (\theta \right ) \\ \end{align*}

[_linear]

1.817