2.4.12 second order airy

Table 2.473: second order airy

#

ODE

CAS classification

Solved?

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8818

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8819

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8820

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8821

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8822

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8823

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8824

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8825

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8826

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8827

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8828

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8829

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8830

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8831

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8832

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8833

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8834

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8835

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8836

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8837

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8838

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11020

\[ {}y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11092

\[ {}4 y^{\prime \prime }+9 x y = 0 \]

[[_Emden, _Fowler]]

12502

\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12512

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13677

\[ {}x^{\prime \prime }+\left (1+t \right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17545

\[ {}y^{\prime \prime }+t y = 0 \]

[[_Emden, _Fowler]]

17550

\[ {}y^{\prime \prime }-t y = \frac {1}{\pi } \]

unknown