2.2.230 Problems 22901 to 23000

Table 2.473: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

22901

\begin{align*} x^{\prime }&=y+z \\ y^{\prime }&=x+z \\ z^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.433

22902

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.175

22903

\begin{align*} x^{\prime }+x-5 y&=0 \\ y^{\prime }+4 x+5 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.189

22904

\begin{align*} x^{\prime }+3 y^{\prime }+y&={\mathrm e}^{t} \\ -x+y^{\prime }&=y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.156

22905

\begin{align*} x^{\prime }-3 x-6 y&=27 t^{2} \\ x^{\prime }+y^{\prime }-3 y&=5 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 5 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.161

22906

\begin{align*} x^{\prime \prime }&=-2 y \\ y^{\prime }&=y-x^{\prime } \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 10 \\ y \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.017

22907

\begin{align*} y^{\prime \prime }&=x-2 \\ x^{\prime \prime }&=2+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.015

22908

\begin{align*} x^{\prime }+y^{\prime }&=\cos \left (t \right ) \\ x+y^{\prime \prime }&=2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (\pi \right ) &= 2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

system_of_ODEs

0.016

22909

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=x-y \\ z^{\prime }&=2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.181

22910

\begin{align*} x^{\prime }&=x+y+z \\ y^{\prime }&=2 x+5 y+3 z \\ z^{\prime }&=3 x+9 y+5 z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -2 \\ y \left (0\right ) &= -1 \\ z \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.168

22911

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.020

22912

\begin{align*} x^{\prime }+6 x+3 y^{\prime }+2 y&=0 \\ x^{\prime }+5 x+2 y^{\prime }+3 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.348

22913

\begin{align*} x^{\prime }-x+2 y^{\prime }+7 y&=0 \\ 2 x^{\prime }+y^{\prime }+x+5 y&=0 \\ \end{align*}

system_of_ODEs

0.267

22914

\begin{align*} x^{\prime }+5 x+3 y^{\prime }-11 y&=0 \\ x^{\prime }+3 x+y^{\prime }-7 y&=0 \\ \end{align*}

system_of_ODEs

0.327

22915

\begin{align*} x^{\prime }-2 x+4 y&=0 \\ 3 x+2 y^{\prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.321

22916

\begin{align*} x^{\prime }+3 x+2 y&=0 \\ 3 x+y^{\prime }+y&=0 \\ \end{align*}

system_of_ODEs

0.463

22917

\begin{align*} x^{\prime }+4 x+3 y^{\prime }+4 y&=0 \\ x^{\prime }+2 x+2 y^{\prime }+2 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 6 \\ \end{align*}

system_of_ODEs

0.266

22918

\begin{align*} x^{\prime }+x+2 y^{\prime }+3 y&=0 \\ x^{\prime }-2 x+5 y^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.447

22919

\begin{align*} x^{\prime }-x-y&=0 \\ 5 x+y^{\prime }-3 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.454

22920

\begin{align*} 2 x-y^{\prime }-5 y&=0 \\ x^{\prime }+x+2 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -10 \\ \end{align*}

system_of_ODEs

0.306

22921

\begin{align*} 2 x^{\prime }-6 x+3 y^{\prime }-2 y&=0 \\ 7 x^{\prime }+4 x+7 y^{\prime }+20 y&=0 \\ \end{align*}

system_of_ODEs

0.369

22922

\begin{align*} x^{\prime }+x+2 y&=8 \\ 2 x+y^{\prime }-2 y&=2 \,{\mathrm e}^{-t}-8 \\ \end{align*}

system_of_ODEs

0.543

22923

\begin{align*} x^{\prime }+2 y&=4 \,{\mathrm e}^{2 t} \\ x+y^{\prime }-y&=2 \,{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 7 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.531

22924

\begin{align*} x^{\prime }-x+2 y^{\prime }+7 y&=3 t -15 \\ 2 x^{\prime }+y^{\prime }+x+5 y&=9 t -7 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.487

22925

\begin{align*} x^{\prime }+3 x-y^{\prime }-y&=0 \\ 2 x^{\prime }-9 x+y^{\prime }+4 y&=15 \,{\mathrm e}^{-3 t} \\ \end{align*}

system_of_ODEs

0.584

22926

\begin{align*} 3 x-y^{\prime }-2 y&=8 t \\ x^{\prime }-2 x+y&=16 \,{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.017

22927

\begin{align*} 2 x^{\prime }-x-y^{\prime }+y&=4 t \,{\mathrm e}^{-t}-3 \,{\mathrm e}^{-t} \\ x^{\prime }+4 x-2 y^{\prime }-4 y&=2 t \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.527

22928

\begin{align*} 2 x^{\prime }-x+7 y^{\prime }+3 y&=90 \sin \left (2 t \right ) \\ x^{\prime }-5 x+8 y^{\prime }-3 y&=0 \\ \end{align*}

system_of_ODEs

0.913

22929

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}

system_of_ODEs

0.026

22930

\begin{align*} x^{\prime }-5 x+y^{\prime }+2 z&=24 \,{\mathrm e}^{-t} \\ x^{\prime }-x-y&=0 \\ 5 y^{\prime }-11 y+2 z^{\prime }-2 z&=0 \\ \end{align*}

system_of_ODEs

0.999

22931

\begin{align*} x^{\prime }+3 x-2 y&={\mathrm e}^{-t} \\ y^{\prime }-x+4 y&=\sin \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.718

22932

\begin{align*} x^{\prime }-x+2 y-z&=t^{2} \\ y^{\prime }+3 x-y+4 z&={\mathrm e}^{t} \\ z^{\prime }-2 x+y-z&=0 \\ \end{align*}

system_of_ODEs

35.451

22933

\begin{align*} z+x^{\prime }&=x \\ y^{\prime }-2 x&=y+3 t \\ z^{\prime }+4 y&=z-\cos \left (t \right ) \\ \end{align*}

system_of_ODEs

1.946

22934

\begin{align*} x^{\prime }+5 x-4 y&=0 \\ y^{\prime }-x+2 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.336

22935

\begin{align*} x^{\prime }+x-5 y&=0 \\ y^{\prime }+4 x+5 y&=0 \\ \end{align*}

system_of_ODEs

0.454

22936

\begin{align*} x^{\prime }-2 x+3 y&=0 \\ -2 x+y^{\prime }+3 y&=0 \\ \end{align*}

system_of_ODEs

0.280

22937

\begin{align*} x^{\prime }+3 x-6 y&=0 \\ y^{\prime }&=x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.402

22938

\begin{align*} x^{\prime }&=x+8 y \\ y^{\prime }&=-2 x-7 y \\ \end{align*}

system_of_ODEs

0.266

22939

\begin{align*} x^{\prime }&=-12 x-7 y \\ y^{\prime }&=19 x+11 y \\ \end{align*}

system_of_ODEs

0.686

22940

\begin{align*} x^{\prime }-y&=t \\ x+y^{\prime }&=t^{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.523

22941

\begin{align*} x^{\prime }+3 x+4 y&=8 \,{\mathrm e}^{t} \\ -x+y^{\prime }-y&=0 \\ \end{align*}

system_of_ODEs

0.473

22942

\begin{align*} x^{\prime }-2 x+y&={\mathrm e}^{-t} \\ y^{\prime }-3 x+2 y&=t \\ \end{align*}

system_of_ODEs

0.970

22943

\begin{align*} x^{\prime }+2 x-y&=100 \sin \left (t \right ) \\ y^{\prime }-4 x-y&=36 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -8 \\ y \left (0\right ) &= -21 \\ \end{align*}

system_of_ODEs

0.715

22944

\begin{align*} x^{\prime }-3 x-6 y&=9-9 t \\ y^{\prime }+3 x+3 y&=9 t \,{\mathrm e}^{-3 t} \\ \end{align*}

system_of_ODEs

0.723

22945

\begin{align*} x^{\prime }&=2 x-3 y+t \,{\mathrm e}^{-t} \\ y^{\prime }&=2 x-3 y+{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.498

22946

\begin{align*} x^{\prime }+4 x+2 y-z&=12 \,{\mathrm e}^{t} \\ y^{\prime }-2 x-5 y+3 z&=0 \\ z^{\prime }+4 x+z&=30 \,{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

1.135

22947

\begin{align*} y y^{\prime }&=x^{2} \\ \end{align*}

[_separable]

2.160

22948

\begin{align*} \left (x +1\right ) y^{\prime }&=1+y \\ \end{align*}

[_separable]

1.560

22949

\begin{align*} 1+y^{2}&=\left (x^{2}+1\right ) y^{\prime } \\ \end{align*}

[_separable]

2.075

22950

\begin{align*} y^{\prime } \sin \left (y\right )&=\sec \left (x \right )^{2} \\ \end{align*}

[_separable]

1.658

22951

\begin{align*} x^{\prime }&=\frac {x}{t} \\ \end{align*}

[_separable]

1.386

22952

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.426

22953

\begin{align*} \frac {\tan \left (y\right )}{\cos \left (x \right )}&=\cos \left (x \right ) y^{\prime } \\ y \left (\frac {\pi }{4}\right ) &= \frac {\pi }{2} \\ \end{align*}

[_separable]

3.824

22954

\begin{align*} y^{\prime } x&=\left (x +1\right ) y^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

3.096

22955

\begin{align*} x \cos \left (y\right ) y^{\prime }-\left (x^{2}+1\right ) \sin \left (y\right )&=0 \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

[_separable]

2.493

22956

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=\left (-1+y\right ) x \\ \end{align*}

[_separable]

1.519

22957

\begin{align*} \left (y+2\right ) x +y \left (2+x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.092

22958

\begin{align*} x y \left (x^{2}+1\right ) y^{\prime }-y^{2}&=1 \\ \end{align*}

[_separable]

5.138

22959

\begin{align*} y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

3.016

22960

\begin{align*} y^{\prime } x -1+y&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

1.574

22961

\begin{align*} -y^{\prime } x +y&=3 y^{2} y^{\prime } \\ y \left (3\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.964

22962

\begin{align*} x^{2} y^{\prime }+2 y x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

2.211

22963

\begin{align*} x \cos \left (y\right ) y^{\prime }+\sin \left (y\right )&=5 \\ \end{align*}

[_separable]

5.579

22964

\begin{align*} y^{\prime }&=\frac {\sin \left (x \right ) \sin \left (y\right )}{\cos \left (x \right ) \cos \left (y\right )} \\ \end{align*}

[_separable]

2.189

22965

\begin{align*} x \sec \left (y\right )^{2} y^{\prime }+1+\tan \left (y\right )&=0 \\ \end{align*}

[_separable]

19.914

22966

\begin{align*} {\mathrm e}^{y} \left (y^{\prime } x +1\right )&=5 \\ \end{align*}

[_separable]

2.359

22967

\begin{align*} {\mathrm e}^{x} \left (y^{\prime }+y\right )&=3 \\ \end{align*}

[[_linear, ‘class A‘]]

0.828

22968

\begin{align*} \frac {y}{x}+\ln \left (x \right ) y^{\prime }&=2 \\ \end{align*}

[_linear]

1.375

22969

\begin{align*} y^{\prime }&=\frac {x -y}{x +y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.515

22970

\begin{align*} y^{\prime }&=1+\frac {y}{x} \\ \end{align*}

[_linear]

1.699

22971

\begin{align*} y^{\prime }&=\frac {x^{2}+y^{2}}{y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.961

22972

\begin{align*} y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.033

22973

\begin{align*} y^{\prime }&=\frac {x -y+1}{x +y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.280

22974

\begin{align*} y^{\prime }&=\frac {x -y+2}{x +1} \\ \end{align*}

[_linear]

1.949

22975

\begin{align*} y^{\prime }&=\frac {x +y+2}{x +1} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_linear]

1.789

22976

\begin{align*} y^{\prime }+3 y&=5 \\ y \left (0\right ) &= y_{0} \\ \end{align*}

[_quadrature]

0.572

22977

\begin{align*} y^{\prime }+2 y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.598

22978

\begin{align*} y^{\prime }-2 y x&=3 x \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

2.666

22979

\begin{align*} y^{\prime }+7 y&={\mathrm e}^{5 x} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.136

22980

\begin{align*} y^{\prime }-6 y&={\mathrm e}^{6 t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.012

22981

\begin{align*} y^{\prime }-6 y&={\mathrm e}^{6 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.928

22982

\begin{align*} z^{\prime }-z \sin \left (x \right )&={\mathrm e}^{-\cos \left (x \right )} \\ z \left (0\right ) &= 0 \\ \end{align*}

[_linear]

30.933

22983

\begin{align*} z^{\prime }-z \sin \left (x \right )&={\mathrm e}^{-\cos \left (x \right )} \\ z \left (2 \pi \right ) &= 2 \\ \end{align*}

[_linear]

28.453

22984

\begin{align*} y^{\prime }-\frac {3 y}{x}&=5 x \\ y \left ({\mathrm e}\right ) &= 0 \\ \end{align*}

[_linear]

2.116

22985

\begin{align*} y^{\prime }-\frac {6 y}{x}&=7 x \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

2.226

22986

\begin{align*} y^{\prime }-\sin \left (x \right ) y&=\sin \left (x \right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

2.074

22987

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\sec \left (x \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}

[_linear]

1.624

22988

\begin{align*} \left ({\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{x} y&={\mathrm e}^{x} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

2.114

22989

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y x&=\left (x^{2}+1\right )^{{3}/{2}} \\ y \left (0\right ) &= 7 \\ \end{align*}

[_linear]

1.992

22990

\begin{align*} p^{\prime }&=15-20 p \\ p \left (0\right ) &= {\frac {7}{10}} \\ \end{align*}

[_quadrature]

0.610

22991

\begin{align*} n^{\prime }&=k n-b t \\ n \left (0\right ) &= n_{0} \\ \end{align*}

[[_linear, ‘class A‘]]

0.905

22992

\begin{align*} y^{\prime } x -2 \cos \left (x \right ) y&={\mathrm e}^{x} \sin \left (x \right )^{3} \\ \end{align*}

[_linear]

30.897

22993

\begin{align*} \sin \left (x \right ) y^{\prime }+2 \cos \left (x \right ) y&=4 \cos \left (x \right )^{3} \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ \end{align*}

[_linear]

2.827

22994

\begin{align*} y^{\prime }&=\frac {y x +a^{2}}{a^{2}-x^{2}} \\ \end{align*}

[_linear]

1.401

22995

\begin{align*} y^{\prime }+\frac {y \ln \left (x \right )}{x}&=2 \\ \end{align*}

[_linear]

1.508

22996

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{x k} \\ \end{align*}

[[_linear, ‘class A‘]]

1.088

22997

\begin{align*} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y&=x \\ \end{align*}

[_linear]

1.935

22998

\begin{align*} v^{\prime }&=60 t -4 v \\ v \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.850

22999

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.958

23000

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.909