2.2.249 Problems 24801 to 24900

Table 2.511: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

24801

\begin{align*} y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

3.435

24802

\begin{align*} {y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.664

24803

\begin{align*} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

53.900

24804

\begin{align*} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.766

24805

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.520

24806

\begin{align*} y&=y^{\prime } x +k {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.638

24807

\begin{align*} x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.811

24808

\begin{align*} x^{4} {y^{\prime }}^{2}+2 y y^{\prime } x^{3}-4&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.796

24809

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.025

24810

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.690

24811

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.597

24812

\begin{align*} y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.662

24813

\begin{align*} x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.194

24814

\begin{align*} y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.187

24815

\begin{align*} {y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

3210.684

24816

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.676

24817

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{n} \\ \end{align*}

[_Clairaut]

5.495

24818

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.916

24819

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.195

24820

\begin{align*} 2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.515

24821

\begin{align*} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.110

24822

\begin{align*} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

1.993

24823

\begin{align*} {y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.183

24824

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.549

24825

\begin{align*} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[_rational, _dAlembert]

7.166

24826

\begin{align*} 5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.611

24827

\begin{align*} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.550

24828

\begin{align*} y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.067

24829

\begin{align*} 8 y&={y^{\prime }}^{2}+3 x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

7.783

24830

\begin{align*} x {y^{\prime }}^{2}+y y^{\prime }&=3 y^{4} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.451

24831

\begin{align*} 9 x {y^{\prime }}^{2}+3 y y^{\prime }+y^{8}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.764

24832

\begin{align*} {y^{\prime }}^{2}+y^{\prime } y^{2} x +y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

3.969

24833

\begin{align*} 4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.783

24834

\begin{align*} 4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.352

24835

\begin{align*} 9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.518

24836

\begin{align*} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.277

24837

\begin{align*} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.717

24838

\begin{align*} 9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

1.127

24839

\begin{align*} y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.829

24840

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.965

24841

\begin{align*} y^{2} {y^{\prime }}^{3}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.787

24842

\begin{align*} y {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.469

24843

\begin{align*} y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

13.000

24844

\begin{align*} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.510

24845

\begin{align*} 6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y&=0 \\ \end{align*}

[_quadrature]

0.279

24846

\begin{align*} 9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.444

24847

\begin{align*} 4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

1.204

24848

\begin{align*} x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.701

24849

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.096

24850

\begin{align*} y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

1.188

24851

\begin{align*} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.319

24852

\begin{align*} 4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.121

24853

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

7.490

24854

\begin{align*} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.732

24855

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

8.076

24856

\begin{align*} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.990

24857

\begin{align*} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.527

24858

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.383

24859

\begin{align*} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.693

24860

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.713

24861

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2}&=0 \\ \end{align*}

[_linear]

0.194

24862

\begin{align*} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.039

24863

\begin{align*} \left (1+y^{\prime }\right )^{2} \left (-y^{\prime } x +y\right )&=1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.718

24864

\begin{align*} {y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.148

24865

\begin{align*} x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\ \end{align*}

[_quadrature]

0.148

24866

\begin{align*} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

26.437

24867

\begin{align*} {y^{\prime }}^{2}+y y^{\prime }-x -1&=0 \\ \end{align*}

[_dAlembert]

7.764

24868

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

15.311

24869

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.895

24870

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.779

24871

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5.452

24872

\begin{align*} y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.935

24873

\begin{align*} \left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.067

24874

\begin{align*} 2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

22.269

24875

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

5.212

24876

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

4.237

24877

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.271

24878

\begin{align*} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

9.303

24879

\begin{align*} y^{\prime \prime }+\beta ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.523

24880

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

2.890

24881

\begin{align*} \cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

10.956

24882

\begin{align*} y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\ y \left (2\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.096

24883

\begin{align*} y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.886

24884

\begin{align*} y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.716

24885

\begin{align*} y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.195

24886

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

114.703

24887

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

112.694

24888

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.453

24889

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3.723

24890

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

3.965

24891

\begin{align*} 2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

31.349

24892

\begin{align*} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.684

24893

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

181.378

24894

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

199.007

24895

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

9.454

24896

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

52.544

24897

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8.225

24898

\begin{align*} x^{2} y^{\prime \prime }&=y^{\prime } \left (2 x -y^{\prime }\right ) \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

2.738

24899

\begin{align*} x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

4.863

24900

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

5.283