| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
3.435 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
53.900 |
|
| \begin{align*}
2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.766 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
y&=y^{\prime } x +k {y^{\prime }}^{2} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+2 y y^{\prime } x^{3}-4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.796 |
|
| \begin{align*}
4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.025 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.690 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.597 |
|
| \begin{align*}
y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.194 |
|
| \begin{align*}
y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
1.187 |
|
| \begin{align*}
{y^{\prime }}^{4} x -2 y {y^{\prime }}^{3}+12 x^{3}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
3210.684 |
|
| \begin{align*}
x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
2.676 |
|
| \begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{n} \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
5.495 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.916 |
|
| \begin{align*}
2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
1.195 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.515 |
|
| \begin{align*}
{y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
2.110 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y y^{\prime }+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.993 |
|
| \begin{align*}
{y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.183 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.549 |
|
| \begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.166 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.611 |
|
| \begin{align*}
{y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.550 |
|
| \begin{align*}
y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.067 |
|
| \begin{align*}
8 y&={y^{\prime }}^{2}+3 x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
7.783 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }&=3 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| \begin{align*}
9 x {y^{\prime }}^{2}+3 y y^{\prime }+y^{8}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.764 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{\prime } y^{2} x +y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
3.969 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.783 |
|
| \begin{align*}
4 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.352 |
|
| \begin{align*}
9 {y^{\prime }}^{2}+12 x y^{4} y^{\prime }+4 y^{5}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.518 |
|
| \begin{align*}
2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.277 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
2.717 |
|
| \begin{align*}
9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
1.127 |
|
| \begin{align*}
y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.829 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y y^{\prime }-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.965 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{3}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✗ |
✗ |
2.787 |
|
| \begin{align*}
y {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.469 |
|
| \begin{align*}
y {y^{\prime }}^{3}-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.000 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
2.510 |
|
| \begin{align*}
6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.444 |
|
| \begin{align*}
4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
1.204 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.701 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.096 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| \begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
2.319 |
|
| \begin{align*}
4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| \begin{align*}
{y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
7.490 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.732 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
8.076 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✗ |
1.990 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✗ |
✗ |
2.383 |
|
| \begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.693 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.713 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (x -y\right )^{2}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.039 |
|
| \begin{align*}
\left (1+y^{\prime }\right )^{2} \left (-y^{\prime } x +y\right )&=1 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.718 |
|
| \begin{align*}
{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
1.148 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| \begin{align*}
y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
26.437 |
|
| \begin{align*}
{y^{\prime }}^{2}+y y^{\prime }-x -1&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.764 |
|
| \begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
15.311 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.895 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.779 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
5.452 |
|
| \begin{align*}
y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
1.935 |
|
| \begin{align*}
\left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.067 |
|
| \begin{align*}
2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
22.269 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
5.212 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.237 |
|
| \begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
1.271 |
|
| \begin{align*}
-{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
9.303 |
|
| \begin{align*}
y^{\prime \prime }+\beta ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
10.523 |
|
| \begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
2.890 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
10.956 |
|
| \begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (2\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
3.096 |
|
| \begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
1.886 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
5.716 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{-2 y}&=0 \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
4.195 |
|
| \begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✓ |
✗ |
114.703 |
|
| \begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= -\frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✗ |
✓ |
✗ |
112.694 |
|
| \begin{align*}
-x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
10.453 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
3.723 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.965 |
|
| \begin{align*}
2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
31.349 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
3.684 |
|
| \begin{align*}
y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
181.378 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
199.007 |
|
| \begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
9.454 |
|
| \begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
52.544 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
8.225 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=y^{\prime } \left (2 x -y^{\prime }\right ) \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.738 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.863 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
5.283 |
|