| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{4} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }+x^{3}\right ) \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.924 |
|
| \begin{align*}
y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
824.461 |
|
| \begin{align*}
{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2}&=0 \\
y \left (0\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✗ |
✗ |
878.937 |
|
| \begin{align*}
y^{\prime }-y^{\prime \prime } x +{y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
431.708 |
|
| \begin{align*}
{y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+y^{\prime \prime } x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✗ |
✗ |
447.350 |
|
| \begin{align*}
3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
3.479 |
|
| \begin{align*}
4 y {y^{\prime }}^{2} y^{\prime \prime }&=3+{y^{\prime }}^{4} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.468 |
|
| \begin{align*}
y^{\prime }&=2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime } t&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.343 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.963 |
|
| \begin{align*}
y^{\prime }&=2 y \left (y-1\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.669 |
|
| \begin{align*}
2 y y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.425 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.075 |
|
| \begin{align*}
y^{\prime }&=3 y+12 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime }&=-y+3 t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.623 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime }&=2 t y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.351 |
|
| \begin{align*}
y^{\prime }&=-{\mathrm e}^{y}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
\left (1+t \right ) y^{\prime }+y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.264 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.881 |
|
| \begin{align*}
y^{\prime }&=t +3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.173 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 t}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
y^{\prime }&=t \,{\mathrm e}^{-t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.199 |
|
| \begin{align*}
y^{\prime }&=\frac {1+t}{t} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
y^{\prime \prime }&=2 t +1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.153 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.102 |
|
| \begin{align*}
y^{\prime }&=3 y+12 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.544 |
|
| \begin{align*}
y^{\prime }&=-y+3 t \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.764 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| \begin{align*}
\left (1+t \right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= -9 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.474 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 t}-1 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime }&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
3.408 |
|
| \begin{align*}
y^{\prime }&=t \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.835 |
|
| \begin{align*}
y^{\prime }&=y \left (y+t \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.120 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.251 |
|
| \begin{align*}
y^{\prime }&=-t +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.618 |
|
| \begin{align*}
y^{\prime }&=-t y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.379 |
|
| \begin{align*}
y^{\prime }&=y-t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.149 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.486 |
|
| \begin{align*}
y^{\prime }&=\frac {t y}{1+y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.627 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime }&=y \left (y+t \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.085 |
|
| \begin{align*}
y^{\prime }&=-t +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime }&=1-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
y^{\prime }&=2 y \left (5-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.713 |
|
| \begin{align*}
y y^{\prime }&=1-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
t^{2} y^{\prime }&=1-2 t y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
\frac {y^{\prime }}{y}&=-t +y \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
y^{\prime } t&=y-2 t y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.844 |
|
| \begin{align*}
y^{\prime }&=t y^{2}-y^{2}+t -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.208 |
|
| \begin{align*}
\left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.477 |
|
| \begin{align*}
y^{\prime }&=t^{2}+y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
39.619 |
|
| \begin{align*}
{\mathrm e}^{t} y^{\prime }&=y^{3}-y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.775 |
|
| \begin{align*}
y y^{\prime }&=t \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.724 |
|
| \begin{align*}
1-y^{2}-t y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.242 |
|
| \begin{align*}
y^{3} y^{\prime }&=t \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| \begin{align*}
y^{4} y^{\prime }&=t +2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.566 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| \begin{align*}
\tan \left (t \right ) y+y^{\prime }&=\tan \left (t \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.744 |
|
| \begin{align*}
y^{\prime }&=t^{m} y^{n} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.130 |
|
| \begin{align*}
y^{\prime }&=4 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.735 |
|
| \begin{align*}
y y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime }&=1+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.421 |
|
| \begin{align*}
t y y^{\prime }+t^{2}+1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.364 |
|
| \begin{align*}
y+1+\left (y-1\right ) \left (t^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.698 |
|
| \begin{align*}
2 y y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.334 |
|
| \begin{align*}
\left (1-t \right ) y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.512 |
|
| \begin{align*}
-y+y^{\prime }&=y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.219 |
|
| \begin{align*}
y^{\prime }&=4 t y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.330 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +2 y}{x} \\
y \left (1\right ) &= {\mathrm e} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.355 |
|
| \begin{align*}
2 t y+y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.726 |
|
| \begin{align*}
y^{\prime }&=\frac {\cot \left (y\right )}{t} \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.118 |
|
| \begin{align*}
\frac {\left (u^{2}+1\right ) y^{\prime }}{y}&=u \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.876 |
|
| \begin{align*}
t y-\left (t +2\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y^{2}}{t} \\
y \left (1\right ) &= \sqrt {3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.646 |
|
| \begin{align*}
3 y+y^{\prime }&={\mathrm e}^{t} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.080 |
|
| \begin{align*}
\cos \left (t \right ) y^{\prime }+\sin \left (t \right ) y&=1 \\
y \left (0\right ) &= 5 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.076 |
|
| \begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.985 |
|
| \begin{align*}
y^{\prime } t +y&={\mathrm e}^{t} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.451 |
|
| \begin{align*}
y^{\prime } t +m y&=t \ln \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.088 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{t}+\cos \left (t^{2}\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.494 |
|
| \begin{align*}
y^{\prime }+2 y&=\sin \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.398 |
|
| \begin{align*}
y^{\prime }-3 y&=25 \cos \left (4 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.485 |
|
| \begin{align*}
t \left (1+t \right ) y^{\prime }&=2+y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
z^{\prime }&=2 t \left (z-t^{2}\right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.676 |
|
| \begin{align*}
y^{\prime }+a y&=b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
y \cos \left (t \right )+y^{\prime }&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.116 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{1+t}&=\left (1+t \right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.938 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{t}&=\frac {1+t}{t} \\
y \left (1\right ) &= -3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.955 |
|
| \begin{align*}
y^{\prime }+a y&={\mathrm e}^{-a t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| \begin{align*}
y^{\prime }+a y&={\mathrm e}^{b t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.166 |
|
| \begin{align*}
y^{\prime }+a y&=t^{n} {\mathrm e}^{-a t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.717 |
|
| \begin{align*}
y^{\prime }&=\tan \left (t \right ) y+\sec \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.455 |
|
| \begin{align*}
y^{\prime } t +2 y \ln \left (t \right )&=4 \ln \left (t \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.324 |
|
| \begin{align*}
y^{\prime }-\frac {n y}{t}&={\mathrm e}^{t} t^{n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
-y+y^{\prime }&={\mathrm e}^{2 t} t \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| \begin{align*}
y^{\prime } t +3 y&=t^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.278 |
|