2.2.252 Problems 25101 to 25200

Table 2.517: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

25101

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.674

25102

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.895

25103

\begin{align*} 2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.801

25104

\begin{align*} y^{\prime \prime }+13 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.628

25105

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.246

25106

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.032

25107

\begin{align*} y^{\prime \prime }-4 y^{\prime }-21 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.553

25108

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.106

25109

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.616

25110

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.972

25111

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.245

25112

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.533

25113

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.259

25114

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.158

25115

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.428

25116

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

22.142

25117

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.992

25118

\begin{align*} y^{\prime \prime }+4 y&=1+{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.280

25119

\begin{align*} y^{\prime \prime }-y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.924

25120

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.103

25121

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

23.328

25122

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.553

25123

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.235

25124

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 t \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.944

25125

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 t} \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

36.600

25126

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=104 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.440

25127

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.017

25128

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.792

25129

\begin{align*} y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.820

25130

\begin{align*} y^{\prime \prime }-4 y&=2-8 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

46.653

25131

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{-6 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.855

25132

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=16 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.795

25133

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.194

25134

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.539

25135

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=6 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.483

25136

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.611

25137

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

17.644

25138

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

32.025

25139

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=36 t \,{\mathrm e}^{4 t} \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

39.542

25140

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.636

25141

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.279

25142

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.103

25143

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.063

25144

\begin{align*} y^{\prime \prime \prime \prime }+y^{4}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.023

25145

\begin{align*} y^{\left (5\right )}+t y^{\prime \prime }-3 y&=0 \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.038

25146

\begin{align*} y^{\prime \prime \prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.049

25147

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.050

25148

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.042

25149

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.044

25150

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.048

25151

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }-25 y^{\prime }+50 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.047

25152

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+25 y^{\prime }+50 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.052

25153

\begin{align*} y^{\left (6\right )}+27 y^{\prime \prime \prime \prime }+243 y^{\prime \prime }+729 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.076

25154

\begin{align*} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+18 y^{\prime \prime }-27 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.180

25155

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.089

25156

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.106

25157

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.472

25158

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.118

25159

\begin{align*} y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.460

25160

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.106

25161

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime }&=4 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_high_order, _missing_y]]

0.177

25162

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=t \\ \end{align*}

[[_3rd_order, _missing_y]]

0.107

25163

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.121

25164

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.276

25165

\begin{align*} y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.283

25166

\begin{align*} y_{1}^{\prime }-6 y_{1}&=-4 y_{2} \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.437

25167

\begin{align*} y_{1}^{\prime }-3 y_{1}&=-4 y_{2} \\ y_{2}^{\prime }+y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.367

25168

\begin{align*} y_{1}^{\prime }&=2 y_{2} \\ y_{2}^{\prime }&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.398

25169

\begin{align*} y_{1}^{\prime }-2 y_{1}&=2 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }+y_{2}&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 3 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.026

25170

\begin{align*} y_{1}^{\prime }+4 y_{1}&=10 y_{2} \\ y_{2}^{\prime \prime }-6 y_{2}^{\prime }+23 y_{2}&=9 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 2 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.023

25171

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-2 y_{2} \\ y_{2}^{\prime \prime }+y_{2}^{\prime }+6 y_{2}&=4 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 5 \\ y_{2}^{\prime }\left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.024

25172

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}^{\prime }+6 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+6 y_{2}&=9 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 6 \\ y_{2}^{\prime }\left (0\right ) &= 6 \\ \end{align*}

system_of_ODEs

0.027

25173

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -1 \\ y_{1}^{\prime }\left (0\right ) &= -4 \\ y_{2} \left (0\right ) &= 1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.027

25174

\begin{align*} y_{1}^{\prime }&=-y_{2} \\ y_{2}^{\prime }-2 y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.293

25175

\begin{align*} y_{1}^{\prime }-y_{1}&=-2 y_{2} \\ y_{2}^{\prime }-y_{2}&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.279

25176

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-y_{2} \\ y_{2}^{\prime \prime }-y_{2}^{\prime }+y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= -1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.023

25177

\begin{align*} y_{1}^{\prime }+2 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+5 y_{2}&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.023

25178

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 10 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 10 \\ y_{2}^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.025

25179

\begin{align*} y^{\prime \prime }+y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.080

25180

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

15.260

25181

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.647

25182

\begin{align*} y^{\prime \prime }+y^{\prime } t +\left (t^{2}+1\right )^{2} y^{2}&=0 \\ \end{align*}

[NONE]

0.500

25183

\begin{align*} 3 t^{2} y^{\prime \prime }+2 y^{\prime } t +y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

70.282

25184

\begin{align*} y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.428

25185

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.635

25186

\begin{align*} y^{\prime \prime }-2 y&=t y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.793

25187

\begin{align*} y^{\prime \prime }+2 y+t \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.696

25188

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.048

25189

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +\left (t^{2}-5\right ) y&=0 \\ \end{align*}

[_Bessel]

4.158

25190

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t -y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.787

25191

\begin{align*} t^{2} y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14.395

25192

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.965

25193

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.602

25194

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.715

25195

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.361

25196

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.577

25197

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=2 t \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.174

25198

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.941

25199

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.177

25200

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.039