2.2.253 Problems 25201 to 25300

Table 2.519: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

25201

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.881

25202

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.811

25203

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=2 t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.066

25204

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=t^{5} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.872

25205

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.567

25206

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=t^{5} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.682

25207

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=t^{5} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.353

25208

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=t^{5} \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.525

25209

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=t^{5} \\ y \left (1\right ) &= a \\ y^{\prime }\left (1\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.415

25210

\begin{align*} t^{2} y^{\prime \prime }+3 y^{\prime } t -4 y&=t^{4} \\ y \left (-1\right ) &= y_{1} \\ y^{\prime }\left (-1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.421

25211

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=\frac {t^{2}+1}{-t^{2}+1} \\ y \left (2\right ) &= y_{1} \\ y^{\prime }\left (2\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

32.659

25212

\begin{align*} \sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= y_{1} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.884

25213

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-y^{\prime } t +t^{2} y&=\cos \left (t \right ) \\ y \left (0\right ) &= y_{1} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.048

25214

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y&=0 \\ y \left (10\right ) &= y_{1} \\ y^{\prime }\left (10\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.005

25215

\begin{align*} t \left (t^{2}-4\right ) y^{\prime \prime }+y&={\mathrm e}^{t} \\ y \left (1\right ) &= y_{1} \\ y^{\prime }\left (1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.911

25216

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.792

25217

\begin{align*} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.332

25218

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.724

25219

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.478

25220

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.415

25221

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime } t&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.358

25222

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.499

25223

\begin{align*} 2 t^{2} y^{\prime \prime }-5 y^{\prime } t +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.204

25224

\begin{align*} 9 t^{2} y^{\prime \prime }+3 y^{\prime } t +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.332

25225

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.932

25226

\begin{align*} 4 t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.263

25227

\begin{align*} t^{2} y^{\prime \prime }-3 y^{\prime } t -21 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.953

25228

\begin{align*} t^{2} y^{\prime \prime }+7 y^{\prime } t +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.943

25229

\begin{align*} t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.327

25230

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.757

25231

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.933

25232

\begin{align*} t^{2} y^{\prime \prime }-3 y^{\prime } t +13 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.997

25233

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t -2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.783

25234

\begin{align*} 4 t^{2} y^{\prime \prime }+y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.190

25235

\begin{align*} t^{2} y^{\prime \prime }+y^{\prime } t +4 y&=0 \\ y \left (1\right ) &= -3 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.365

25236

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.171

25237

\begin{align*} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.308

25238

\begin{align*} t y^{\prime \prime }+\left (1+t \right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.191

25239

\begin{align*} t y^{\prime \prime }+\left (2+4 t \right ) y^{\prime }+\left (4+4 t \right ) y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.273

25240

\begin{align*} t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.267

25241

\begin{align*} t y^{\prime \prime }-4 y^{\prime }+t y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.213

25242

\begin{align*} t y^{\prime \prime }+\left (2 t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.253

25243

\begin{align*} -t y^{\prime \prime }+\left (-2+t \right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.414

25244

\begin{align*} -t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.318

25245

\begin{align*} t y^{\prime \prime }+\left (2-5 t \right ) y^{\prime }+\left (6 t -5\right ) y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.395

25246

\begin{align*} t y^{\prime \prime }+2 y^{\prime }+9 t y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.459

25247

\begin{align*} t y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _exact, _linear, _homogeneous]]

0.027

25248

\begin{align*} t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.371

25249

\begin{align*} t^{2} y^{\prime \prime }-3 y^{\prime } t +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.103

25250

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t -2 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.095

25251

\begin{align*} 4 t^{2} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.091

25252

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.088

25253

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.105

25254

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.112

25255

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.282

25256

\begin{align*} t y^{\prime \prime }-2 \left (1+t \right ) y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.109

25257

\begin{align*} y^{\prime \prime }-2 \sec \left (t \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.119

25258

\begin{align*} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.103

25259

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.114

25260

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.096

25261

\begin{align*} \left (\cos \left (2 t \right )+1\right ) y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.217

25262

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime } t +\left (t^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.105

25263

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.109

25264

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.109

25265

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.471

25266

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.130

25267

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

25.342

25268

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

4.903

25269

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.276

25270

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.684

25271

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.870

25272

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.674

25273

\begin{align*} t^{2} y^{\prime \prime }-2 y^{\prime } t +2 y&=t^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.688

25274

\begin{align*} t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _missing_y]]

2.829

25275

\begin{align*} t^{2} y^{\prime \prime }-y^{\prime } t +y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.118

25276

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

32.070

25277

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.860

25278

\begin{align*} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.527

25279

\begin{align*} t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=4 t^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.340

25280

\begin{align*} y^{\prime \prime }-y&=\frac {1}{1+{\mathrm e}^{-t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.441

25281

\begin{align*} y^{\prime \prime }+a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.934

25282

\begin{align*} y^{\prime \prime }-a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.851

25283

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

25284

\begin{align*} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=f \left (t \right ) \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.644

25285

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 8 t & 2\le t <\infty \end {array}\right . \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.000

25286

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} {\mathrm e}^{t} & 0\le t <1 \\ {\mathrm e}^{2 t} & 1\le t <\infty \end {array}\right . \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

25287

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t <4 \\ 0 & 4\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.142

25288

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.107

25289

\begin{align*} -y+y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ t -1 & 1\le t <2 \\ -t +3 & 2\le t <3 \\ 0 & 3\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.140

25290

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \\ y \left (\pi \right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.196

25291

\begin{align*} y^{\prime \prime }-y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.042

25292

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 4 & 2\le t <\infty \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.944

25293

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & t =0 \\ \sin \left (\frac {1}{t}\right ) & \operatorname {otherwise} \end {array}\right . \\ \end{align*}
Using Laplace transform method.

[_quadrature]

1.411

25294

\begin{align*} y^{\prime }+2 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ -3 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.542

25295

\begin{align*} y^{\prime }+5 y&=\left \{\begin {array}{cc} -5 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.855

25296

\begin{align*} y^{\prime }-3 y&=\left \{\begin {array}{cc} 0 & 0\le t <2 \\ 2 & 2\le t <3 \\ 0 & 3\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.427

25297

\begin{align*} y^{\prime }+2 y&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.002

25298

\begin{align*} y^{\prime }-4 y&=\left \{\begin {array}{cc} 12 \,{\mathrm e}^{t} & 0\le t <1 \\ 12 \,{\mathrm e} & 1\le t \end {array}\right . \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

2.406

25299

\begin{align*} 3 y+y^{\prime }&=\left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

1.307

25300

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.768