2.2.254 Problems 25301 to 25400

Table 2.521: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

25301

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=\left \{\begin {array}{cc} 1 & 0\le t <5 \\ 0 & 5\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.402

25302

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 6 & 1\le t <3 \\ 0 & 3\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.871

25303

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.797

25304

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.879

25305

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\left \{\begin {array}{cc} {\mathrm e}^{-t} & 0\le t <4 \\ 0 & 4\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.283

25306

\begin{align*} y^{\prime }+2 y&=\delta \left (t -1\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.484

25307

\begin{align*} y^{\prime }-3 y&=3+\delta \left (-2+t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.512

25308

\begin{align*} y^{\prime }-4 y&=\delta \left (t -4\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.637

25309

\begin{align*} y+y^{\prime }&=\delta \left (t -1\right )-\delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.891

25310

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.731

25311

\begin{align*} y^{\prime \prime }-y&=\delta \left (t -1\right )-\delta \left (-2+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.234

25312

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=2 \delta \left (-2+t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.453

25313

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.833

25314

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=3 \delta \left (t -1\right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.819

25315

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=3 \delta \left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.986

25316

\begin{align*} y^{\prime }-3 y&=\operatorname {Heaviside}\left (-2+t \right ) \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.898

25317

\begin{align*} y^{\prime }+4 y&=\delta \left (t -3\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.644

25318

\begin{align*} y^{\prime \prime }-y&=\delta \left (t -1\right )-\delta \left (-2+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.173

25319

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=\delta \left (t -3\right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.827

25320

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.189

25321

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.162

25322

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.117

25323

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.215

25324

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _missing_x]]

0.291

25325

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _missing_x]]

0.419

25326

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _missing_x]]

0.332

25327

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _missing_x]]

0.413

25328

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.373

25329

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Gegenbauer]

0.359

25330

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.317

25331

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.266

25332

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.309

25333

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } t -4 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.436

25334

\begin{align*} y^{\prime \prime }+\frac {t y^{\prime }}{-t^{2}+1}+\frac {y}{1+t}&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.503

25335

\begin{align*} y^{\prime \prime }+\frac {\left (1-t \right ) y^{\prime }}{t}+\frac {\left (1-\cos \left (t \right )\right ) y}{t^{3}}&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.704

25336

\begin{align*} y^{\prime \prime }+3 t \left (1-t \right ) y^{\prime }+\frac {\left (1-{\mathrm e}^{t}\right ) y}{t}&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.923

25337

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{t}+\frac {\left (1-t \right ) y}{t^{3}}&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.125

25338

\begin{align*} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+4 t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.609

25339

\begin{align*} 2 t y^{\prime \prime }+y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.560

25340

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t +t^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Lienard]

0.595

25341

\begin{align*} t^{2} y^{\prime \prime }+t \,{\mathrm e}^{t} y^{\prime }+4 \left (1-4 t \right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.795

25342

\begin{align*} t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Laguerre]

0.840

25343

\begin{align*} t^{2} y^{\prime \prime }+3 t \left (1+3 t \right ) y^{\prime }+\left (-t^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.648

25344

\begin{align*} t^{2} y^{\prime \prime }+5 y^{\prime } t +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.100

25345

\begin{align*} t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Lienard]

0.591

25346

\begin{align*} 2 t^{2} y^{\prime \prime }-y^{\prime } t +\left (1+t \right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.656

25347

\begin{align*} t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.536

25348

\begin{align*} 2 t^{2} y^{\prime \prime }-y^{\prime } t +\left (1-t \right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.652

25349

\begin{align*} t^{2} y^{\prime \prime }+t^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.689

25350

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t -a \,t^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.628

25351

\begin{align*} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.690

25352

\begin{align*} t y^{\prime \prime }-4 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

1.916

25353

\begin{align*} t^{2} \left (1-t \right ) y^{\prime \prime }+\left (t^{2}+t \right ) y^{\prime }+\left (1-2 t \right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.574

25354

\begin{align*} t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.669

25355

\begin{align*} t^{2} y^{\prime \prime }+t \left (1-2 t \right ) y^{\prime }+\left (t^{2}-t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.557

25356

\begin{align*} t^{2} \left (1+t \right ) y^{\prime \prime }-t \left (2 t +1\right ) y^{\prime }+\left (2 t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.629

25357

\begin{align*} t y^{\prime \prime }+2 \left (i t -k \right ) y^{\prime }-2 i k y&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.980

25358

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=y_{1} y_{2} \\ \end{align*}

system_of_ODEs

0.028

25359

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2}+t^{2} \\ y_{2}^{\prime }&=-y_{1}+y_{2}+1 \\ \end{align*}

system_of_ODEs

0.708

25360

\begin{align*} y_{1}^{\prime }&=\sin \left (t \right ) y_{1} \\ y_{2}^{\prime }&=y_{1}+\cos \left (t \right ) y_{2} \\ \end{align*}

system_of_ODEs

0.034

25361

\begin{align*} y_{1}^{\prime }&=t \sin \left (y_{1}\right )-y_{2} \\ y_{2}^{\prime }&=y_{1}+t \cos \left (y_{2}\right ) \\ \end{align*}

system_of_ODEs

0.040

25362

\begin{align*} y_{1}^{\prime }&=y_{1} \\ y_{2}^{\prime }&=2 y_{1}+y_{4} \\ y_{3}^{\prime }&=y_{4} \\ y_{4}^{\prime }&=y_{2}+2 y_{3} \\ \end{align*}

system_of_ODEs

1.168

25363

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{2}-y_{2}+5 \\ y_{2}^{\prime }&=-y_{1}+\frac {y_{2}}{2}-5 \\ \end{align*}

system_of_ODEs

0.589

25364

\begin{align*} y_{1}^{\prime }&=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }&=4 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.409

25365

\begin{align*} y_{1}^{\prime }&=3 y_{1}-y_{2} \\ y_{2}^{\prime }&=4 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.365

25366

\begin{align*} y_{1}^{\prime }&=2 y_{1}-y_{2} \\ y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.410

25367

\begin{align*} y_{1}^{\prime }&=y_{2}+t \\ y_{2}^{\prime }&=-y_{1}-t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.585

25368

\begin{align*} y_{1}^{\prime }&=-y_{1} \\ y_{2}^{\prime }&=3 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.328

25369

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.490

25370

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2} \\ y_{2}^{\prime }&=2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= -1 \\ y_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.330

25371

\begin{align*} y_{1}^{\prime }&=-y_{1}+2 y_{2} \\ y_{2}^{\prime }&=-2 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.412

25372

\begin{align*} y_{1}^{\prime }&=2 y_{1}-y_{2} \\ y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.411

25373

\begin{align*} y_{1}^{\prime }&=2 y_{1}-5 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.422

25374

\begin{align*} y_{1}^{\prime }&=3 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.347

25375

\begin{align*} y_{1}^{\prime }&=-y_{1}+3 y_{3} \\ y_{2}^{\prime }&=2 y_{2} \\ y_{3}^{\prime }&=y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.566

25376

\begin{align*} y_{1}^{\prime }&=4 y_{2} \\ y_{2}^{\prime }&=-y_{1} \\ y_{3}^{\prime }&=y_{1}+4 y_{2}-y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.750

25377

\begin{align*} y_{1}^{\prime }&=2 y_{1}-y_{2}+{\mathrm e}^{t} \\ y_{2}^{\prime }&=3 y_{1}-2 y_{2}+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.681

25378

\begin{align*} y_{1}^{\prime }&=-y_{1}+2 y_{2}+5 \\ y_{2}^{\prime }&=-2 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.623

25379

\begin{align*} y_{1}^{\prime }&=2 y_{1}-5 y_{2}+2 \cos \left (t \right ) \\ y_{2}^{\prime }&=y_{1}-2 y_{2}+\cos \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.857

25380

\begin{align*} y_{1}^{\prime }&=-y_{1}-4 y_{2}+4 \\ y_{2}^{\prime }&=y_{1}-y_{2}+1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.636

25381

\begin{align*} y_{1}^{\prime }&=2 y_{1}+y_{2}+{\mathrm e}^{t} \\ y_{2}^{\prime }&=y_{1}+2 y_{2}-{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.586

25382

\begin{align*} y_{1}^{\prime }&=5 y_{1}+2 y_{2}+t \\ y_{2}^{\prime }&=-8 y_{1}-3 y_{2}-2 t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.569

25383

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+2 y_{2}+y_{3}+{\mathrm e}^{-2 t} \\ y_{2}^{\prime }&=-y_{2} \\ y_{3}^{\prime }&=2 y_{1}-2 y_{2}-y_{3}-{\mathrm e}^{-2 t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.849

25384

\begin{align*} y_{1}^{\prime }&=y_{2}+y_{3}+{\mathrm e}^{2 t} \\ y_{2}^{\prime }&=y_{1}+y_{2}-y_{3}+{\mathrm e}^{2 t} \\ y_{3}^{\prime }&=-2 y_{1}+y_{2}+3 y_{3}-{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 0 \\ y_{3} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.834

25385

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+y_{2} \\ y_{2}^{\prime }&=-4 y_{1}+3 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.414

25386

\begin{align*} y_{1}^{\prime }&=5 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.415

25387

\begin{align*} y_{1}^{\prime }&=y_{2} t \\ y_{2}^{\prime }&=-y_{1} t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.037

25388

\begin{align*} y_{1}^{\prime }&=y_{1} t +y_{2} t \\ y_{2}^{\prime }&=-y_{1} t -y_{2} t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 4 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.039

25389

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{t}+y_{2} \\ y_{2}^{\prime }&=-y_{1}+\frac {y_{2}}{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (\pi \right ) &= 1 \\ y_{2} \left (\pi \right ) &= -1 \\ \end{align*}

system_of_ODEs

0.040

25390

\begin{align*} y_{1}^{\prime }&=\left (2 t +1\right ) y_{1}+2 y_{2} t \\ y_{2}^{\prime }&=-2 y_{1} t +\left (1-2 t \right ) y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.041

25391

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2} \\ y_{2}^{\prime }&=\frac {y_{1}}{t}+\frac {y_{2}}{t} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= -3 \\ y_{2} \left (1\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.037

25392

\begin{align*} y_{1}^{\prime }&=\frac {y_{1}}{t}+1 \\ y_{2}^{\prime }&=\frac {y_{2}}{t}+t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 1 \\ y_{2} \left (1\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.036

25393

\begin{align*} y_{1}^{\prime }&=-\frac {y_{2}}{t}+1 \\ y_{2}^{\prime }&=\frac {y_{1}}{t}+\frac {2 y_{2}}{t}-1 \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 2 \\ y_{2} \left (1\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.039

25394

\begin{align*} y_{1}^{\prime }&=\frac {4 t y_{1}}{t^{2}+1}+\frac {6 y_{2} t}{t^{2}+1}-3 t \\ y_{2}^{\prime }&=-\frac {2 t y_{1}}{t^{2}+1}-\frac {4 y_{2} t}{t^{2}+1}+t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (1\right ) &= 1 \\ y_{2} \left (1\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.046

25395

\begin{align*} y_{1}^{\prime }&=3 \sec \left (t \right ) y_{1}+5 \sec \left (t \right ) y_{2} \\ y_{2}^{\prime }&=-\sec \left (t \right ) y_{1}-3 \sec \left (t \right ) y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.044

25396

\begin{align*} y_{1}^{\prime }&=y_{1} t +y_{2} t +4 t \\ y_{2}^{\prime }&=-y_{1} t -y_{2} t +4 t \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 4 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.040

25397

\begin{align*} y^{\prime }&=y \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.924

25398

\begin{align*} y^{\prime }&=a \left (t \right ) y \\ \end{align*}

[_separable]

2.435

25399

\begin{align*} y^{\prime }&=2-y \\ \end{align*}

[_quadrature]

0.523

25400

\begin{align*} y^{\prime }&=2-y \\ y \left (0\right ) &= 4 \\ \end{align*}

[_quadrature]

1.668