| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2001 |
\begin{align*}
y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.144 |
|
| 2002 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }&=12 t +2 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.144 |
|
| 2003 |
\begin{align*}
y^{\prime } x&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.144 |
|
| 2004 |
\begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.144 |
|
| 2005 |
\begin{align*}
y^{\prime }-5 y&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.144 |
|
| 2006 |
\begin{align*}
y^{\prime \prime \prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.144 |
|
| 2007 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-2 y&=-{\mathrm e}^{3 x} \left (17 x^{2}+67 x +9\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2008 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }&=x^{2}+8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2009 |
\begin{align*}
y^{\prime \prime \prime }&=\sin \left (x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2010 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2011 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=4 t \,{\mathrm e}^{-3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2012 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2013 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2014 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y&={\mathrm e}^{x}+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2015 |
\begin{align*}
y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2016 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+y y^{\prime } x -6 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2017 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2018 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=3 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2019 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| 2020 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2021 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2022 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.146 |
|
| 2023 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.146 |
|
| 2024 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.146 |
|
| 2025 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.146 |
|
| 2026 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2027 |
\begin{align*}
x y^{\prime \prime \prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2028 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2029 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=-2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2030 |
\begin{align*}
y^{\prime \prime }+a \left (y^{\prime } x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.146 |
|
| 2031 |
\begin{align*}
x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2032 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.146 |
|
| 2033 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| 2034 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.147 |
|
| 2035 |
\begin{align*}
y^{2} \left (3 y-6 y^{\prime } x \right )-x \left (y-2 y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2036 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2037 |
\begin{align*}
y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime }&={\mathrm e}^{2 x}+x^{2}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2038 |
\begin{align*}
u^{\prime }&=u^{3} \\
u \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2039 |
\begin{align*}
x^{\prime \prime \prime }-x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2040 |
\begin{align*}
x y^{\prime \prime \prime }-\frac {6 y}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2041 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| 2042 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 5 \\
y^{\prime \prime }\left (1\right ) &= -11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2043 |
\begin{align*}
y^{\left (5\right )}+2 y^{\prime \prime \prime }+2 y^{\prime \prime }&=3 x^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2044 |
\begin{align*}
2 y^{\prime } x&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.148 |
|
| 2045 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y&={\mathrm e}^{-3 x} \left (6 x^{2}-23 x +32\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2046 |
\begin{align*}
2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-2 y^{\prime }-y&=3 \,{\mathrm e}^{-\frac {x}{2}} \left (1-6 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2047 |
\begin{align*}
2 t y+y^{\prime }&=t \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2048 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y&=\sin \left (x k \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2049 |
\begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2050 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2051 |
\begin{align*}
y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2052 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.148 |
|
| 2053 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.148 |
|
| 2054 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2055 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2056 |
\begin{align*}
y^{\prime \prime \prime }-7 y^{\prime }-6 y&={\mathrm e}^{2 x} \left (x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2057 |
\begin{align*}
y^{\prime \prime \prime }&=-24 \cos \left (\frac {\pi x}{2}\right ) \\
y \left (0\right ) &= -4 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2058 |
\begin{align*}
8 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2059 |
\begin{align*}
3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2060 |
\begin{align*}
x \left (x -2\right ) y^{\prime \prime }-2 \left (x^{2}-3 x +3\right ) y^{\prime }+\left (x^{2}-4 x +6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.148 |
|
| 2061 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2062 |
\begin{align*}
6 x^{2} y^{\prime \prime }-5 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2063 |
\begin{align*}
y^{\left (5\right )}+y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }-11 y^{\prime \prime }-8 y^{\prime }+12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2064 |
\begin{align*}
x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| 2065 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y&={\mathrm e}^{-2 x} \left (3 x^{2}-17 x +2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.149 |
|
| 2066 |
\begin{align*}
y^{\left (5\right )}+4 y^{\prime \prime \prime }&=7+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.149 |
|
| 2067 |
\begin{align*}
2 y x +\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.149 |
|
| 2068 |
\begin{align*}
\left ({\mathrm e}^{x}+1\right ) y^{\prime }+2 \,{\mathrm e}^{x} y&=\left ({\mathrm e}^{x}+1\right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.149 |
|
| 2069 |
\begin{align*}
x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.149 |
|
| 2070 |
\begin{align*}
y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.149 |
|
| 2071 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.149 |
|
| 2072 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.149 |
|
| 2073 |
\begin{align*}
x^{3} \left (1-x \right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.150 |
|
| 2074 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y&=5 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| 2075 |
\begin{align*}
y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| 2076 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=x \left (1-{\mathrm e}^{x} x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| 2077 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.150 |
|
| 2078 |
\begin{align*}
\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.150 |
|
| 2079 |
\begin{align*}
x y^{2}+\left (y^{2} x^{2}+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| 2080 |
\begin{align*}
y^{\prime }+z&=t \\
z^{\prime }-y&=0 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| 2081 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.150 |
|
| 2082 |
\begin{align*}
y^{\prime }+\sin \left (t \right ) y&=0 \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2083 |
\begin{align*}
x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2084 |
\begin{align*}
9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2085 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2086 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.151 |
|
| 2087 |
\begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2088 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2089 |
\begin{align*}
y+y^{\prime }&=2 \sin \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2090 |
\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.151 |
|
| 2091 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.151 |
|
| 2092 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=x \,{\mathrm e}^{x}-3 x^{2} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2093 |
\begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+16 y^{\prime \prime }&=96 \,{\mathrm e}^{-4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2094 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.151 |
|
| 2095 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y&=3 \,{\mathrm e}^{x}-2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2096 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| 2097 |
\begin{align*}
4 y^{\prime \prime \prime }-3 y^{\prime }-y&={\mathrm e}^{-\frac {x}{2}} \left (2-3 x \right ) \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 15 \\
y^{\prime \prime }\left (0\right ) &= -17 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2098 |
\begin{align*}
-8 y+3 y^{\prime } x +x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2099 |
\begin{align*}
y^{\prime }+y \tanh \left (x \right )&=2 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.152 |
|
| 2100 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.152 |
|