2.1.3 Problems not solved. Second order only

Table 2.5: Problems not solved. Second order only. [1017]

#

ID

ODE

CAS classification

Maple

Mma

Sympy

time(sec)

\(1\)

232

\begin{align*} y y^{\prime \prime }&=6 x^{4} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.269

\(2\)

1360

\begin{align*} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5}&=\cos \left (t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.556

\(3\)

1752

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\left (6 x -8\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.689

\(4\)

1754

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

55.171

\(5\)

2591

\begin{align*} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y&=1+t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

\(6\)

3491

\begin{align*} -\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {y^{\prime \prime }}{y}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y}&=2 a^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

4.914

\(7\)

5744

\begin{align*} \left (x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.258

\(8\)

5745

\begin{align*} \left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.971

\(9\)

5746

\begin{align*} y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.914

\(10\)

5747

\begin{align*} \left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.218

\(11\)

5748

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.836

\(12\)

5749

\begin{align*} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.392

\(13\)

5751

\begin{align*} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.669

\(14\)

5752

\begin{align*} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

4.766

\(15\)

5754

\begin{align*} a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.384

\(16\)

5755

\begin{align*} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.394

\(17\)

5756

\begin{align*} y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.184

\(18\)

5757

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.873

\(19\)

5761

\begin{align*} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.103

\(20\)

5763

\begin{align*} \left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.905

\(21\)

5764

\begin{align*} \left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.099

\(22\)

5765

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.342

\(23\)

5812

\begin{align*} \left (c \,x^{2}+b \right ) y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.408

\(24\)

5819

\begin{align*} n y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

2.864

\(25\)

5820

\begin{align*} -a y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

2.861

\(26\)

5824

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.909

\(27\)

5830

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.383

\(28\)

5831

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.584

\(29\)

5832

\begin{align*} \left (\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.018

\(30\)

5833

\begin{align*} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.248

\(31\)

5842

\begin{align*} b \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.431

\(32\)

5844

\begin{align*} k \left (1+k \right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.184

\(33\)

5846

\begin{align*} \left (p \left (1+p \right )-k^{2} \csc \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.484

\(34\)

5847

\begin{align*} \left (\operatorname {a0} -\operatorname {a2} \csc \left (x \right )^{2}+4 \operatorname {a1} \sin \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.283

\(35\)

5850

\begin{align*} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.985

\(36\)

5851

\begin{align*} \left (a \cot \left (x \right )^{2}+b \cot \left (x \right ) \csc \left (x \right )+c \csc \left (x \right )^{2}\right ) y+k \cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.569

\(37\)

5854

\begin{align*} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.429

\(38\)

5858

\begin{align*} \csc \left (x \right )^{2} \left (2+\sin \left (x \right )^{2}\right ) y-\csc \left (2 x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

99.931

\(39\)

5866

\begin{align*} -a \left (1+a \right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.446

\(40\)

5869

\begin{align*} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=\left (x +1\right ) \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

118.095

\(41\)

5874

\begin{align*} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.812

\(42\)

5876

\begin{align*} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.167

\(43\)

5877

\begin{align*} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.217

\(44\)

5879

\begin{align*} b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.753

\(45\)

5881

\begin{align*} a k \,x^{-1+k} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.378

\(46\)

5883

\begin{align*} 4 y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.714

\(47\)

5884

\begin{align*} \left (-x^{2}+4 a +2\right ) y+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.740

\(48\)

5887

\begin{align*} \left (a +x \right ) y+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.627

\(49\)

5894

\begin{align*} \left ({\mathrm e}^{x^{2}}-k^{2}\right ) x^{3} y-y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.351

\(50\)

5901

\begin{align*} y+\left (1+a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.992

\(51\)

5902

\begin{align*} y+\left (1-a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.813

\(52\)

5903

\begin{align*} -y+\left (1+a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.145

\(53\)

5907

\begin{align*} \left (\operatorname {b2} x +\operatorname {b1} \right ) y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.340

\(54\)

5908

\begin{align*} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.359

\(55\)

5911

\begin{align*} n y+\left (1-x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

8.323

\(56\)

5912

\begin{align*} n y+\left (1+k -x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

9.058

\(57\)

5917

\begin{align*} b y+\left (a +x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.816

\(58\)

5918

\begin{align*} -a y+\left (c -x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Laguerre]

8.888

\(59\)

5922

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.149

\(60\)

5923

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

81.653

\(61\)

5924

\begin{align*} \left (b x +2 a \right ) y-2 \left (b x +a \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

94.688

\(62\)

5925

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

35.454

\(63\)

5938

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a +x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.815

\(64\)

5942

\begin{align*} \left (b x +a \right ) y+y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.530

\(65\)

5948

\begin{align*} y+4 \coth \left (x \right ) y^{\prime }+4 y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

29.912

\(66\)

5949

\begin{align*} \left (b x +a \right ) y+8 y^{\prime }+16 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.698

\(67\)

5951

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.807

\(68\)

5965

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.549

\(69\)

5967

\begin{align*} x^{k} \left (a +b \,x^{k}\right ) y+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.933

\(70\)

5985

\begin{align*} -\left (c \,x^{2}+b x +a \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

61.946

\(71\)

5986

\begin{align*} -\left (-x^{4}+4 a \,x^{2}+n^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

63.099

\(72\)

5987

\begin{align*} -\left (c^{2} x^{4}+b^{2} x^{2}+a^{2}\right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

62.285

\(73\)

5988

\begin{align*} \left (m +1\right ) x^{m} a \left (m \right ) y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.973

\(74\)

6000

\begin{align*} a y-2 \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.559

\(75\)

6021

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.922

\(76\)

6023

\begin{align*} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.082

\(77\)

6025

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.829

\(78\)

6031

\begin{align*} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.121

\(79\)

6037

\begin{align*} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.411

\(80\)

6041

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.500

\(81\)

6045

\begin{align*} \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+\operatorname {c1} \,x^{2 k}\right ) y+x \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.720

\(82\)

6046

\begin{align*} a y+2 x^{2} \cot \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.068

\(83\)

6047

\begin{align*} -\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

68.470

\(84\)

6048

\begin{align*} a y-2 x^{2} \tan \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.066

\(85\)

6049

\begin{align*} -\left (a +x \tan \left (x \right )\right ) y+x \left (1-2 x \tan \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.158

\(86\)

6050

\begin{align*} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.428

\(87\)

6065

\begin{align*} \left (b \,x^{2}+a \right ) y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.198

\(88\)

6071

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

85.518

\(89\)

6072

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=\frac {2 \left (-1-n \right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

82.848

\(90\)

6073

\begin{align*} -p \left (1+p \right ) y+2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.251

\(91\)

6074

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

82.457

\(92\)

6081

\begin{align*} n \left (1+a +b +n \right ) y+\left (-a +b -\left (2+a +b \right ) x \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

231.201

\(93\)

6082

\begin{align*} p \left (2 k +p \right ) y-\left (1+2 k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

42.997

\(94\)

6083

\begin{align*} p \left (1+2 k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

50.031

\(95\)

6084

\begin{align*} -\left (k -p \right ) \left (1+k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

38.626

\(96\)

6087

\begin{align*} b y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

117.868

\(97\)

6088

\begin{align*} \left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.193

\(98\)

6089

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

265.128

\(99\)

6090

\begin{align*} \left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

65.684

\(100\)

6092

\begin{align*} y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

40.675

\(101\)

6105

\begin{align*} p \left (1+p \right ) y+\left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

87.218

\(102\)

6106

\begin{align*} 2 y+\left (1-x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

50.379

\(103\)

6112

\begin{align*} \left (-k +p \right ) \left (1+k +p \right ) y+\left (1+k \right ) \left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

140.238

\(104\)

6113

\begin{align*} n \left (a +n \right ) y+\left (c -\left (1+a \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

155.986

\(105\)

6114

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.810

\(106\)

6115

\begin{align*} -a b y+\left (c -\left (a +b +1\right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

198.063

\(107\)

6118

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

165.549

\(108\)

6131

\begin{align*} \operatorname {a2} y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x \left (\operatorname {a0} +x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

112.040

\(109\)

6132

\begin{align*} 6 y-4 \left (a +x \right ) y^{\prime }+\left (\operatorname {a0} +x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

101.333

\(110\)

6139

\begin{align*} 2 a^{2} y-y^{\prime } x +2 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

74.990

\(111\)

6145

\begin{align*} a y-\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

68.302

\(112\)

6146

\begin{align*} \left (b x +a \right ) y+\left (1-2 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

95.447

\(113\)

6147

\begin{align*} 2 a \left (1+a \right ) y-\left (1+3 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

109.748

\(114\)

6154

\begin{align*} \left (4 x k -4 p^{2}-x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.818

\(115\)

6166

\begin{align*} -y-8 y^{\prime } x +4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

36.243

\(116\)

6167

\begin{align*} -\left (4 p^{2}+1\right ) y-8 y^{\prime } x +4 \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

57.059

\(117\)

6170

\begin{align*} y+2 \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

47.480

\(118\)

6171

\begin{align*} \left (b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

113.355

\(119\)

6172

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

133.726

\(120\)

6173

\begin{align*} -\left (k -p \right ) \left (1+k +p \right ) y+2 \left (1-\left (3-2 k \right ) x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

144.792

\(121\)

6174

\begin{align*} \left (k^{2} x +b \right ) y+2 \left (a x +1\right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

106.692

\(122\)

6181

\begin{align*} c y+b x y^{\prime }+\left (a \,x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

576.561

\(123\)

6185

\begin{align*} 2 \operatorname {a2} y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

266.234

\(124\)

6190

\begin{align*} -y+2 y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.069

\(125\)

6191

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.591

\(126\)

6192

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.401

\(127\)

6196

\begin{align*} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

107.535

\(128\)

6197

\begin{align*} \operatorname {a2} y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

118.694

\(129\)

6198

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

126.292

\(130\)

6207

\begin{align*} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

263.421

\(131\)

6209

\begin{align*} 2 \left (1-b \right ) x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

239.398

\(132\)

6210

\begin{align*} c x y+\left (a -\left (1+a \right ) x^{2}\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

241.526

\(133\)

6211

\begin{align*} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

237.436

\(134\)

6214

\begin{align*} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x \left (x^{2}+\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

327.110

\(135\)

6221

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

326.727

\(136\)

6222

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} \left (\operatorname {a0} +x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

342.633

\(137\)

6224

\begin{align*} y+x \left (x +1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.057

\(138\)

6226

\begin{align*} \operatorname {a0} \operatorname {a1} \left (-k +x \right ) y+\left (1-\operatorname {a0} +\operatorname {a1} +\operatorname {a0} \operatorname {a2} -\operatorname {a3} +\left (\operatorname {a2} +\operatorname {a3} \right ) x +\left (1+\operatorname {a0} +\operatorname {a1} \right ) x^{2}\right ) y^{\prime }+\left (1-x \right ) \left (a -x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

999.526

\(139\)

6227

\begin{align*} \left (\operatorname {c1} x +\operatorname {c0} \right ) y+\left (\operatorname {b2} \,x^{2}+\operatorname {b1} x +\operatorname {b0} \right ) y^{\prime }+\left (\operatorname {a1} -x \right ) \left (\operatorname {a2} -x \right ) \left (\operatorname {a3} -x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

940.015

\(140\)

6234

\begin{align*} \left (b x +a \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

127.792

\(141\)

6235

\begin{align*} \left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

595.435

\(142\)

6239

\begin{align*} \left (-a^{2}+{\mathrm e}^{\frac {2}{x}}\right ) y+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.878

\(143\)

6244

\begin{align*} \left (c \,x^{4}+b \,x^{2}+a \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.930

\(144\)

6245

\begin{align*} y+x \left (x^{2}+1\right ) y^{\prime }+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

24.022

\(145\)

6253

\begin{align*} a \left (1+a \right ) y-2 x^{3} y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

110.498

\(146\)

6256

\begin{align*} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

56.697

\(147\)

6257

\begin{align*} -\left (m^{2}-n \left (n +1\right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

97.229

\(148\)

6258

\begin{align*} -\left (k^{2}-p \left (1+p \right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.907

\(149\)

6259

\begin{align*} -\left (a^{2}-k \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

61.885

\(150\)

6260

\begin{align*} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

98.388

\(151\)

6261

\begin{align*} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

82.178

\(152\)

6262

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

175.966

\(153\)

6263

\begin{align*} b^{2} y+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

286.894

\(154\)

6264

\begin{align*} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

160.933

\(155\)

6265

\begin{align*} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (a^{2}-x^{2}\right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

212.798

\(156\)

6266

\begin{align*} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} \left (b^{2}+x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

687.018

\(157\)

6267

\begin{align*} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

752.084

\(158\)

6269

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+\left (1-x \right )^{2} x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.408

\(159\)

6271

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (1-x \right ) x \left (\operatorname {b2} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

502.448

\(160\)

6278

\begin{align*} -\left (4 k^{2}+\left (4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

70.028

\(161\)

6279

\begin{align*} -\left (4 k^{2}+\left (-4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

69.178

\(162\)

6280

\begin{align*} -\left (a \left (1+a \right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

416.097

\(163\)

6288

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (a -x \right ) \left (b -x \right ) \left (c -x \right ) \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a -x \right )^{2} \left (b -x \right )^{2} \left (c -x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2577.478

\(164\)

6294

\begin{align*} \left (\operatorname {a2} +\operatorname {b2} \,x^{k}\right ) y+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) y^{\prime }+x^{2} \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.495

\(165\)

6295

\begin{align*} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.300

\(166\)

6296

\begin{align*} -\left (4 k^{2}-\left (-p^{2}+1\right ) \sinh \left (x \right )^{2}\right ) y+4 \cosh \left (x \right ) \sinh \left (x \right ) y^{\prime }+4 \sinh \left (x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.721

\(167\)

6300

\begin{align*} y^{\prime \prime }&=x +6 y^{2} \\ \end{align*}

[[_Painleve, ‘1st‘]]

0.215

\(168\)

6301

\begin{align*} y^{\prime \prime }&=a +b x +c y^{2} \\ \end{align*}

[NONE]

0.245

\(169\)

6304

\begin{align*} y^{\prime \prime }&=a +y x +2 y^{3} \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.246

\(170\)

6305

\begin{align*} y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\ \end{align*}

[NONE]

0.306

\(171\)

6306

\begin{align*} y^{\prime \prime }&=a -2 a b x y+2 b^{2} y^{3} \\ \end{align*}

[NONE]

0.265

\(172\)

6307

\begin{align*} y^{\prime \prime }&=\operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \\ \end{align*}

[NONE]

0.286

\(173\)

6309

\begin{align*} a \,x^{r} y^{s}+y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.241

\(174\)

6313

\begin{align*} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime }&=2 y^{3} \\ \end{align*}

[NONE]

0.481

\(175\)

6316

\begin{align*} a y+y y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

21.928

\(176\)

6317

\begin{align*} y y^{\prime }+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\ \end{align*}

[NONE]

0.434

\(177\)

6318

\begin{align*} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

13.765

\(178\)

6319

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.528

\(179\)

6320

\begin{align*} y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.589

\(180\)

6321

\begin{align*} y^{\prime \prime }&=\operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.740

\(181\)

6322

\begin{align*} y^{\prime \prime }&=y f^{\prime }\left (x \right )+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2.501

\(182\)

6323

\begin{align*} y^{\prime \prime }&=g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.449

\(183\)

6324

\begin{align*} y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.507

\(184\)

6325

\begin{align*} y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.570

\(185\)

6326

\begin{align*} y^{\prime \prime }&=a +4 b^{2} y+3 b y^{2}+3 y y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14.549

\(186\)

6327

\begin{align*} 3 y y^{\prime }+y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y-y^{3} \\ \end{align*}

[NONE]

0.499

\(187\)

6328

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.435

\(188\)

6329

\begin{align*} y^{\prime \prime }&=a \left (1+2 y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

191.188

\(189\)

6330

\begin{align*} b y+a \left (-1+y^{2}\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.745

\(190\)

6331

\begin{align*} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.279

\(191\)

6338

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.030

\(192\)

6345

\begin{align*} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.987

\(193\)

6354

\begin{align*} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{k} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.556

\(194\)

6355

\begin{align*} g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

186.424

\(195\)

6356

\begin{align*} y^{\prime \prime }&=A \,x^{a} y^{b} {y^{\prime }}^{c} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

\(196\)

6358

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.653

\(197\)

6363

\begin{align*} y^{\prime \prime }&=a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.566

\(198\)

6366

\begin{align*} y^{\prime \prime }&=f \left (a x +b y, y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

\(199\)

6367

\begin{align*} y^{\prime \prime }&=f \left (x , \frac {y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.285

\(200\)

6368

\begin{align*} y^{\prime \prime }&=x^{-2+n} f \left (y x^{-n}, x^{1-n} y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.499

\(201\)

6372

\begin{align*} a \,{\mathrm e}^{y} x +y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]]

0.358

\(202\)

6373

\begin{align*} x y^{5}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.284

\(203\)

6374

\begin{align*} x y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.303

\(204\)

6375

\begin{align*} x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.352

\(205\)

6376

\begin{align*} a \,x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.328

\(206\)

6377

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.341

\(207\)

6383

\begin{align*} y^{\prime \prime } x&=-y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.398

\(208\)

6385

\begin{align*} \left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\ \end{align*}

[NONE]

0.458

\(209\)

6389

\begin{align*} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.414

\(210\)

6390

\begin{align*} a \,{\mathrm e}^{-1+y}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.437

\(211\)

6391

\begin{align*} \left (1+a \right ) x y^{\prime }+x^{2} y^{\prime \prime }&=x^{k} f \left (x^{k} y, k y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.951

\(212\)

6395

\begin{align*} x^{2} y^{\prime \prime }&=6 y-4 y^{2} x^{2}+x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.667

\(213\)

6396

\begin{align*} a \left (-y+y^{\prime } x \right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.553

\(214\)

6397

\begin{align*} 2 y x +a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=b \\ \end{align*}

[NONE]

0.543

\(215\)

6398

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.363

\(216\)

6399

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.865

\(217\)

6400

\begin{align*} x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

54.551

\(218\)

6402

\begin{align*} 2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

\(219\)

6404

\begin{align*} 24+12 y x +x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.788

\(220\)

6405

\begin{align*} x^{3} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.599

\(221\)

6406

\begin{align*} -6+x y \left (12+3 y x -2 y^{2} x^{2}\right )+x^{2} \left (9+2 y x \right ) y^{\prime }+2 x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.939

\(222\)

6407

\begin{align*} x^{4} y^{\prime \prime }&=-4 y^{2}+x \left (x^{2}+2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.622

\(223\)

6408

\begin{align*} x^{4} y^{\prime \prime }&=-4 y^{2}+x^{2} y^{\prime } \left (x +y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.742

\(224\)

6409

\begin{align*} \left (-y+y^{\prime } x \right )^{3}+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.099

\(225\)

6410

\begin{align*} y^{b}+x^{a} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.305

\(226\)

6411

\begin{align*} 24-48 y x +\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[NONE]

1.375

\(227\)

6412

\begin{align*} b +a x y-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[NONE]

2.508

\(228\)

6413

\begin{align*} \sqrt {x}\, y^{\prime \prime }&=y^{{3}/{2}} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.311

\(229\)

6414

\begin{align*} x^{{3}/{2}} y^{\prime \prime }&=f \left (\frac {y}{\sqrt {x}}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.858

\(230\)

6416

\begin{align*} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime }&=g \left (y, f \left (x \right ) y^{\prime }\right ) \\ \end{align*}

[NONE]

0.467

\(231\)

6417

\begin{align*} f \left (x \right )^{2} y^{\prime \prime }&=-24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime } \\ \end{align*}

[NONE]

0.523

\(232\)

6419

\begin{align*} 2 f \left (x \right )^{2} y^{\prime \prime }&=2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right ) \\ \end{align*}

[NONE]

0.727

\(233\)

6430

\begin{align*} y y^{\prime \prime }&={\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.543

\(234\)

6432

\begin{align*} y y^{\prime \prime }&=-y^{2} x^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

0.388

\(235\)

6435

\begin{align*} y y^{\prime \prime }&=y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.579

\(236\)

6437

\begin{align*} y-y^{\prime } x +{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

\(237\)

6438

\begin{align*} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

\(238\)

6439

\begin{align*} y y^{\prime \prime }&=y^{3}-y f^{\prime }\left (x \right )+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.562

\(239\)

6440

\begin{align*} y y^{\prime \prime }&=-f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \\ \end{align*}

[NONE]

0.687

\(240\)

6442

\begin{align*} y y^{\prime \prime }&=b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

9.672

\(241\)

6444

\begin{align*} y y^{\prime \prime }&=g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.571

\(242\)

6445

\begin{align*} y y^{\prime \prime }&=-y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.719

\(243\)

6454

\begin{align*} y y^{\prime \prime }&=\operatorname {a2} y^{2}+\operatorname {a3} y^{1+a}+\operatorname {a1} y y^{\prime }+a {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

199.444

\(244\)

6455

\begin{align*} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

\(245\)

6464

\begin{align*} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.394

\(246\)

6465

\begin{align*} \left (x -y\right ) y^{\prime \prime }&=\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.424

\(247\)

6466

\begin{align*} \left (x -y\right ) y^{\prime \prime }&=f \left (y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.485

\(248\)

6472

\begin{align*} 2 y y^{\prime \prime }&=4 y^{2} \left (x +2 y\right )+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.315

\(249\)

6474

\begin{align*} 2 y y^{\prime \prime }&=-1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.330

\(250\)

6475

\begin{align*} 2 y y^{\prime \prime }&=y^{2} \left (a x +b y\right )+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.309

\(251\)

6477

\begin{align*} 2 y y^{\prime \prime }&=-a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2} \\ \end{align*}

[[_Painleve, ‘4th‘]]

0.438

\(252\)

6478

\begin{align*} 2 y y^{\prime \prime }&=8 y^{3}-2 y^{2} \left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )-3 f \left (x \right ) y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.585

\(253\)

6479

\begin{align*} 2 y y^{\prime \prime }&=-1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.511

\(254\)

6482

\begin{align*} 2 y y^{\prime \prime }&=f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.306

\(255\)

6494

\begin{align*} a \left (2+a \right )^{2} y y^{\prime \prime }&=-a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (-1+a \right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.916

\(256\)

6498

\begin{align*} x y y^{\prime \prime }&=y \left (\operatorname {a2} +\operatorname {a3} y^{2}\right )+x \left (\operatorname {a0} +\operatorname {a1} y^{4}\right )-y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_Painleve, ‘3rd‘]]

0.496

\(257\)

6501

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.599

\(258\)

6502

\begin{align*} x y y^{\prime \prime }&=x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.390

\(259\)

6503

\begin{align*} x y y^{\prime \prime }&=b^{2} x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.399

\(260\)

6507

\begin{align*} x y y^{\prime \prime }&=-\left (1+y\right ) y^{\prime }+2 x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.383

\(261\)

6515

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.488

\(262\)

6517

\begin{align*} x^{2} y y^{\prime \prime }&=a y^{2}+a x y y^{\prime }+2 x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.526

\(263\)

6518

\begin{align*} c y^{2}+b x y y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.537

\(264\)

6519

\begin{align*} 2 \left (1-y\right )^{2} y-2 x \left (1-y\right ) y^{\prime }+2 x^{2} {y^{\prime }}^{2}+x^{2} \left (1-y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.006

\(265\)

6520

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=\left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.795

\(266\)

6521

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} \left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.693

\(267\)

6522

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.764

\(268\)

6523

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.424

\(269\)

6524

\begin{align*} 2 x^{2} y y^{\prime \prime }&=-4 y^{2}+2 y y^{\prime } x +x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.499

\(270\)

6526

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }&=a \left (2+x \right ) y^{2}-2 \left (x^{2}+1\right ) y y^{\prime }+x \left (x +1\right )^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.786

\(271\)

6527

\begin{align*} 3 x y^{2}-12 x^{2} y y^{\prime }+4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}+8 \left (-x^{3}+1\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.810

\(272\)

6529

\begin{align*} \sqrt {a^{2}-x^{2}}\, \left (-y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime }\right )&=b x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.898

\(273\)

6530

\begin{align*} \operatorname {f3} \left (x \right ) y^{2}+\operatorname {f2} \left (x \right ) y y^{\prime }+\operatorname {f1} \left (x \right ) {y^{\prime }}^{2}+\operatorname {f0} \left (x \right ) y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.764

\(274\)

6531

\begin{align*} 4 f \left (x \right ) y y^{\prime \prime }&=4 f \left (x \right )^{2} y+3 f \left (x \right ) g \left (x \right ) y^{2}-f \left (x \right ) y^{4}+2 y^{3} f^{\prime }\left (x \right )+\left (-6 f \left (x \right ) y^{2}+2 f^{\prime }\left (x \right )\right ) y^{\prime }+3 f \left (x \right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.759

\(275\)

6533

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

\(276\)

6534

\begin{align*} y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=b x +a \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

\(277\)

6540

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }&=2 \left (x -y^{2}\right ) {y^{\prime }}^{3}-y^{\prime } \left (1+4 y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.569

\(278\)

6541

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }&=\left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.571

\(279\)

6542

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }&=2 \left (1+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.541

\(280\)

6544

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (1-y\right ) y y^{\prime }+\left (1-2 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.593

\(281\)

6546

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.651

\(282\)

6547

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }&=-\left (1-y\right )^{3} \left (\operatorname {F0} \left (x \right )^{2}-\operatorname {G0} \left (x \right )^{2} y^{2}\right )-4 \left (1-y\right ) y^{2} \left (f \left (x \right )^{2}-g \left (x \right )^{2}+f^{\prime }\left (x \right )+g^{\prime }\left (x \right )\right )-4 y \left (f \left (x \right )+g \left (x \right ) y\right ) y^{\prime }+\left (1-3 y\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

1.408

\(283\)

6550

\begin{align*} x y^{2} y^{\prime \prime }&=a \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.268

\(284\)

6551

\begin{align*} x y^{2} y^{\prime \prime }&=\left (a -y^{2}\right ) y^{\prime }+x y {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.418

\(285\)

6552

\begin{align*} x^{2} y^{2} y^{\prime \prime }&=\left (x^{2}+y^{2}\right ) \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.677

\(286\)

6553

\begin{align*} \left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}+\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }&=x \left (a^{2}-y^{2}\right ) y^{\prime } \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.258

\(287\)

6554

\begin{align*} \operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

1.989

\(288\)

6555

\begin{align*} \left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.517

\(289\)

6561

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

1.661

\(290\)

6562

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (\left (1-y\right ) \left (x -y\right ) y\right )^{{3}/{2}}-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

unknown

2.148

\(291\)

6563

\begin{align*} 2 \left (1-x \right )^{2} x^{2} \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=\operatorname {a0} x \left (1-y\right )^{2} \left (x -y\right )^{2}+\left (-1+\operatorname {a2} \right ) \left (1-x \right ) x \left (1-y\right )^{2} y^{2}+\operatorname {a1} \left (1-x \right ) \left (x -y\right )^{2} y^{2}+\operatorname {a3} \left (1-y\right )^{2} \left (x -y\right )^{2} y^{2}+2 \left (1-x \right ) x \left (1-y\right )^{2} y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right )^{2} x^{2} \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\ \end{align*}

[NONE]

4.200

\(292\)

6565

\begin{align*} a^{2} y+\left (x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.536

\(293\)

6566

\begin{align*} A y+\left (a +2 b x +c \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.771

\(294\)

6567

\begin{align*} \operatorname {f3} \left (y\right )+\operatorname {f2} \left (y\right ) y^{\prime }+\operatorname {f1} \left (y\right ) {y^{\prime }}^{2}+\operatorname {f0} \left (y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.014

\(295\)

6569

\begin{align*} \sqrt {y}\, y^{\prime \prime }&=2 b x +2 a \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.297

\(296\)

6570

\begin{align*} X \left (x , y\right )^{3} y^{\prime \prime }&=1 \\ \end{align*}

[NONE]

0.269

\(297\)

6573

\begin{align*} y^{\prime } y^{\prime \prime }&=x y^{2}+x^{2} y y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

6.215

\(298\)

6574

\begin{align*} a y^{2}+x^{3} y^{\prime } y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.666

\(299\)

6579

\begin{align*} \left ({y^{\prime }}^{2}+a \left (-y+y^{\prime } x \right )\right ) y^{\prime \prime }&=b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.570

\(300\)

6581

\begin{align*} h \left (x \right )+g \left (y\right ) y^{\prime }+f \left (y^{\prime }\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.253

\(301\)

6582

\begin{align*} {y^{\prime \prime }}^{2}&=a +b y \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.026

\(302\)

6588

\begin{align*} 2 \left (x -y^{\prime }\right ) y^{\prime }-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}&=2 y \\ \end{align*}

[NONE]

0.054

\(303\)

6589

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.966

\(304\)

6590

\begin{align*} 6 y y^{\prime \prime }-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+\left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}&=36 x {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.147

\(305\)

6591

\begin{align*} h y^{2}+\operatorname {g1} y y^{\prime }+\operatorname {g0} {y^{\prime }}^{2}+\operatorname {f2} y y^{\prime \prime }+\operatorname {f1} y^{\prime } y^{\prime \prime }+\operatorname {f0} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.042

\(306\)

6595

\begin{align*} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}&=4 x y \left (-y+y^{\prime } x \right )^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.065

\(307\)

6599

\begin{align*} f \left (y^{\prime \prime }, y^{\prime }-y^{\prime \prime } x , y-y^{\prime } x +\frac {x^{2} y^{\prime \prime }}{2}\right )&=0 \\ \end{align*}

[NONE]

23.845

\(308\)

6802

\begin{align*} y^{\prime } y^{\prime \prime }&=a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

135.398

\(309\)

7142

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.374

\(310\)

7607

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.248

\(311\)

7694

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+m y&=0 \\ \end{align*}

[_Laguerre]

5.856

\(312\)

8151

\begin{align*} \left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.128

\(313\)

8154

\begin{align*} u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\ \end{align*}

[NONE]

1.084

\(314\)

8157

\begin{align*} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

17.866

\(315\)

8251

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.381

\(316\)

8756

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.021

\(317\)

8761

\begin{align*} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.796

\(318\)

8771

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

84.526

\(319\)

8776

\begin{align*} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y&=\left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.415

\(320\)

8803

\begin{align*} x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.467

\(321\)

8833

\begin{align*} \left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

100.278

\(322\)

8834

\begin{align*} \left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (1+k \right ) \eta &=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

116.844

\(323\)

8973

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.005

\(324\)

9181

\begin{align*} x y y^{\prime \prime }&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[NONE]

0.640

\(325\)

10038

\begin{align*} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.556

\(326\)

10049

\begin{align*} y y^{\prime \prime }&=x \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.262

\(327\)

10050

\begin{align*} y^{2} y^{\prime \prime }&=x \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.348

\(328\)

10052

\begin{align*} 3 y y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[NONE]

0.379

\(329\)

10077

\begin{align*} y^{\prime \prime }-y y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

321.822

\(330\)

10089

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.827

\(331\)

10090

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.562

\(332\)

10091

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.653

\(333\)

10120

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.362

\(334\)

10121

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.443

\(335\)

10123

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-y x -x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.272

\(336\)

10124

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.506

\(337\)

10125

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.093

\(338\)

10126

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-y x -x^{2}-\frac {1}{x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.748

\(339\)

10128

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.108

\(340\)

10129

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-y x -x^{3}-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.065

\(341\)

10130

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.730

\(342\)

10131

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.593

\(343\)

10154

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

109.250

\(344\)

10156

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2}&=0 \\ \end{align*}

[NONE]

0.439

\(345\)

10227

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.512

\(346\)

10229

\begin{align*} \frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.388

\(347\)

10230

\begin{align*} \frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.362

\(348\)

10381

\begin{align*} {y^{\prime \prime }}^{2}+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.064

\(349\)

10414

\begin{align*} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.582

\(350\)

10415

\begin{align*} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.950

\(351\)

10419

\begin{align*} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.622

\(352\)

10424

\begin{align*} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.124

\(353\)

10432

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

51.960

\(354\)

10447

\begin{align*} x^{2} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.650

\(355\)

12292

\begin{align*} y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.734

\(356\)

12295

\begin{align*} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y&=0 \\ \end{align*}

[_Titchmarsh]

1.120

\(357\)

12296

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.525

\(358\)

12299

\begin{align*} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.595

\(359\)

12300

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.446

\(360\)

12301

\begin{align*} y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.056

\(361\)

12302

\begin{align*} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y&=0 \\ \end{align*}

[_ellipsoidal]

2.046

\(362\)

12303

\begin{align*} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y&=0 \\ \end{align*}

[_ellipsoidal]

2.155

\(363\)

12305

\begin{align*} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.949

\(364\)

12306

\begin{align*} y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.272

\(365\)

12307

\begin{align*} y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.635

\(366\)

12312

\begin{align*} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.148

\(367\)

12313

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.815

\(368\)

12316

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.419

\(369\)

12317

\begin{align*} y^{\prime \prime }+y^{\prime } x -n y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.293

\(370\)

12319

\begin{align*} -a y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[_Hermite]

2.326

\(371\)

12321

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.132

\(372\)

12323

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (3 x^{2}+2 n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.525

\(373\)

12327

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.396

\(374\)

12329

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.753

\(375\)

12330

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.704

\(376\)

12335

\begin{align*} y^{\prime \prime }+a \,x^{-1+q} y^{\prime }+b \,x^{q -2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.140

\(377\)

12340

\begin{align*} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.878

\(378\)

12343

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+v \left (v +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.003

\(379\)

12345

\begin{align*} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.748

\(380\)

12349

\begin{align*} y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.183

\(381\)

12350

\begin{align*} y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.321

\(382\)

12351

\begin{align*} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.384

\(383\)

12353

\begin{align*} 4 y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.919

\(384\)

12355

\begin{align*} a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.110

\(385\)

12358

\begin{align*} \left (a +x \right ) y+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.654

\(386\)

12362

\begin{align*} y^{\prime \prime } x +y^{\prime }+\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.850

\(387\)

12365

\begin{align*} y^{\prime \prime } x -y^{\prime }+x^{3} \left ({\mathrm e}^{x^{2}}-v^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.937

\(388\)

12373

\begin{align*} y^{\prime \prime } x +\left (x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.236

\(389\)

12374

\begin{align*} y^{\prime \prime } x +\left (x +a +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.459

\(390\)

12376

\begin{align*} y^{\prime \prime } x -y^{\prime } x -a y&=0 \\ \end{align*}

[_Laguerre]

2.425

\(391\)

12379

\begin{align*} y^{\prime \prime } x +\left (b -x \right ) y^{\prime }-a y&=0 \\ \end{align*}

[_Laguerre]

4.091

\(392\)

12380

\begin{align*} y^{\prime \prime } x -2 \left (x -1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.696

\(393\)

12381

\begin{align*} y^{\prime \prime } x -\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.133

\(394\)

12382

\begin{align*} y^{\prime \prime } x +\left (a x +b +n \right ) y^{\prime }+n a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.048

\(395\)

12383

\begin{align*} y^{\prime \prime } x -\left (a +b \right ) \left (x +1\right ) y^{\prime }+a b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.857

\(396\)

12384

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.926

\(397\)

12386

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.359

\(398\)

12390

\begin{align*} y^{\prime \prime } x -2 \left (x^{2}-a \right ) y^{\prime }+2 n x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.939

\(399\)

12397

\begin{align*} 2 y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.042

\(400\)

12398

\begin{align*} 2 y^{\prime \prime } x -\left (2 x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

[_Laguerre]

3.869

\(401\)

12400

\begin{align*} 4 y^{\prime \prime } x -\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.799

\(402\)

12403

\begin{align*} 4 y^{\prime \prime } x +4 y-\left (2+x \right ) y+l y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.306

\(403\)

12404

\begin{align*} 4 y^{\prime \prime } x +4 m y^{\prime }-\left (x -2 m -4 n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.921

\(404\)

12405

\begin{align*} 16 y^{\prime \prime } x +8 y^{\prime }-\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.331

\(405\)

12408

\begin{align*} 5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.337

\(406\)

12409

\begin{align*} 2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.203

\(407\)

12410

\begin{align*} 2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.217

\(408\)

12411

\begin{align*} \left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.723

\(409\)

12420

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.721

\(410\)

12422

\begin{align*} x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.931

\(411\)

12423

\begin{align*} x^{2} y^{\prime \prime }+a y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.276

\(412\)

12437

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.963

\(413\)

12438

\begin{align*} x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.638

\(414\)

12439

\begin{align*} x^{2} y^{\prime \prime }+2 \left (a +x \right ) y^{\prime }-b \left (b -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.107

\(415\)

12454

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.561

\(416\)

12456

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.040

\(417\)

12461

\begin{align*} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.638

\(418\)

12463

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (a +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.293

\(419\)

12466

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.422

\(420\)

12471

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.000

\(421\)

12472

\begin{align*} x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.948

\(422\)

12473

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.151

\(423\)

12476

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.495

\(424\)

12478

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.574

\(425\)

12479

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.614

\(426\)

12480

\begin{align*} x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+\left (-1\right )^{n} a -a^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.296

\(427\)

12481

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.207

\(428\)

12482

\begin{align*} x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (a +x \tan \left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.711

\(429\)

12483

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

42.018

\(430\)

12484

\begin{align*} x^{2} y^{\prime \prime }+2 x f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right ) x +f \left (x \right )^{2}-f \left (x \right )+a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.876

\(431\)

12485

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} f \left (x \right ) y^{\prime }+\left (x^{2} \left (f^{\prime }\left (x \right )+f \left (x \right )^{2}+a \right )-v \left (v -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.364

\(432\)

12486

\begin{align*} x^{2} y^{\prime \prime }+\left (x -2 x^{2} f \left (x \right )\right ) y^{\prime }+\left (x^{2} \left (1+f \left (x \right )^{2}-f^{\prime }\left (x \right )\right )-f \left (x \right ) x -v^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.116

\(433\)

12491

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.022

\(434\)

12496

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

3.922

\(435\)

12497

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {\left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )-\left (n +1\right ) x \operatorname {LegendreP}\left (n , x\right )}{x^{2}-1}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.682

\(436\)

12500

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

102.887

\(437\)

12503

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -l y&=0 \\ \end{align*}

[_Gegenbauer]

88.941

\(438\)

12504

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -v \left (v +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

89.867

\(439\)

12505

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x -\left (v +2\right ) \left (v -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

920.736

\(440\)

12508

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (v +n +1\right ) \left (v -n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

96.447

\(441\)

12509

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (v -n +1\right ) \left (v +n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

87.643

\(442\)

12512

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

66.579

\(443\)

12513

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

167.035

\(444\)

12516

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.159

\(445\)

12520

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y&=0 \\ \end{align*}

[_Jacobi]

51.385

\(446\)

12522

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[_Jacobi]

105.984

\(447\)

12523

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (1+a \right ) x +b \right ) y^{\prime }-l y&=0 \\ \end{align*}

[_Jacobi]

137.047

\(448\)

12525

\begin{align*} x \left (2+x \right ) y^{\prime \prime }+2 \left (n +1+\left (n +1-2 l \right ) x -l \,x^{2}\right ) y^{\prime }+\left (2 l \left (p -n -1\right ) x +2 p l +m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

202.668

\(449\)

12529

\begin{align*} \left (x -1\right ) \left (x -2\right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

384.569

\(450\)

12532

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[_Jacobi]

51.674

\(451\)

12533

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y&=0 \\ \end{align*}

[_Jacobi]

94.862

\(452\)

12537

\begin{align*} 4 x^{2} y^{\prime \prime }-\left (-4 x k +4 m^{2}+x^{2}-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.943

\(453\)

12539

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2 \left (1-m +2 l \right ) x -m^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.973

\(454\)

12542

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.742

\(455\)

12549

\begin{align*} x \left (4 x -1\right ) y^{\prime \prime }+\left (\left (4 a +2\right ) x -a \right ) y^{\prime }+a \left (-1+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

90.833

\(456\)

12555

\begin{align*} 48 x \left (x -1\right ) y^{\prime \prime }+\left (152 x -40\right ) y^{\prime }+53 y&=0 \\ \end{align*}

[_Jacobi]

48.572

\(457\)

12557

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (120 x -48\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

48.695

\(458\)

12558

\begin{align*} 144 x \left (x -1\right ) y^{\prime \prime }+\left (168 x -96\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Jacobi]

48.618

\(459\)

12559

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+\left (c \,x^{2}+d x +f \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.124

\(460\)

12560

\begin{align*} \operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.582

\(461\)

12565

\begin{align*} \operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

122.146

\(462\)

12566

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

187.510

\(463\)

12568

\begin{align*} -y+2 y^{\prime } x +x^{3} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

30.422

\(464\)

12569

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

43.985

\(465\)

12572

\begin{align*} x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

58.686

\(466\)

12574

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

159.931

\(467\)

12576

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

205.305

\(468\)

12577

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

196.734

\(469\)

12579

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_elliptic, _class_II]]

308.184

\(470\)

12580

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+y x&=0 \\ \end{align*}

[[_elliptic, _class_I]]

73.414

\(471\)

12581

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

171.256

\(472\)

12588

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

190.695

\(473\)

12590

\begin{align*} y^{\prime \prime }&=\frac {2 y^{\prime }}{x \left (x -2\right )}-\frac {y}{x^{2} \left (x -2\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

148.143

\(474\)

12592

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (x -1\right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (x -1\right ) \left (x -a \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

457.559

\(475\)

12593

\begin{align*} y^{\prime \prime }&=-\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

467.913

\(476\)

12596

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

45.119

\(477\)

12597

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (1+a \right ) x -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (x -1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.309

\(478\)

12598

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

10.033

\(479\)

12602

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

262.293

\(480\)

12604

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

174.302

\(481\)

12606

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} a \left (1-a \right )-b \left (x +b \right )\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.839

\(482\)

12607

\begin{align*} y^{\prime \prime }&=-\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.608

\(483\)

12611

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.718

\(484\)

12612

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

49.106

\(485\)

12619

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

156.346

\(486\)

12620

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

221.127

\(487\)

12622

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

78.061

\(488\)

12623

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

51.746

\(489\)

12625

\begin{align*} x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

218.426

\(490\)

12626

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

232.787

\(491\)

12627

\begin{align*} y^{\prime \prime }&=\frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (-1+a \right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (-1+a \right )-v \left (v +1\right )\right )-a \left (1+a \right )\right ) y}{x^{2} \left (x^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

594.730

\(492\)

12630

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

183.268

\(493\)

12631

\begin{align*} y^{\prime \prime }&=-\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

153.638

\(494\)

12634

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

87.141

\(495\)

12635

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

122.072

\(496\)

12636

\begin{align*} y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.627

\(497\)

12637

\begin{align*} y^{\prime \prime }&=\frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

252.987

\(498\)

12638

\begin{align*} y^{\prime \prime }&=-\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

295.853

\(499\)

12647

\begin{align*} y^{\prime \prime }&=-\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.012

\(500\)

12651

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-a^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

39.840

\(501\)

12652

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (-v \left (v +1\right ) \left (x -1\right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

49.761

\(502\)

12655

\begin{align*} y^{\prime \prime }&=-\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

222.533

\(503\)

12656

\begin{align*} y^{\prime \prime }&=-\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (x -1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.155

\(504\)

12661

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

262.699

\(505\)

12665

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (1+a \right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

592.001

\(506\)

12666

\begin{align*} y^{\prime \prime }&=-\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4162.471

\(507\)

12670

\begin{align*} y^{\prime \prime }&=-\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4405.300

\(508\)

12671

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1300.448

\(509\)

12673

\begin{align*} y^{\prime \prime }&=-\frac {\left (a p \,x^{b}+q \right ) y^{\prime }}{x \left (a \,x^{b}-1\right )}-\frac {\left (a r \,x^{b}+s \right ) y}{x^{2} \left (a \,x^{b}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.714

\(510\)

12674

\begin{align*} y^{\prime \prime }&=\frac {y}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.882

\(511\)

12677

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.676

\(512\)

12678

\begin{align*} y^{\prime \prime }&=-\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.560

\(513\)

12679

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.859

\(514\)

12683

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }-\left (a \cos \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.277

\(515\)

12686

\begin{align*} y^{\prime \prime }&=-\frac {a y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.635

\(516\)

12687

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.325

\(517\)

12688

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.962

\(518\)

12689

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

13.267

\(519\)

12690

\begin{align*} y^{\prime \prime }&=-\frac {\left (-\left (a^{2} b^{2}-\left (1+a \right )^{2}\right ) \sin \left (x \right )^{2}-a \left (1+a \right ) b \sin \left (2 x \right )-a \left (-1+a \right )\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.447

\(520\)

12691

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.060

\(521\)

12693

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.501

\(522\)

12696

\begin{align*} y^{\prime \prime }&=-\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.830

\(523\)

12697

\begin{align*} y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.677

\(524\)

12698

\begin{align*} y^{\prime \prime }&=-\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.336

\(525\)

12699

\begin{align*} y^{\prime \prime }&=-\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.802

\(526\)

12701

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.935

\(527\)

12703

\begin{align*} y^{\prime \prime }&=-\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.457

\(528\)

12704

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.485

\(529\)

12837

\begin{align*} y^{\prime \prime }-6 y^{2}-x&=0 \\ \end{align*}

[[_Painleve, ‘1st‘]]

0.227

\(530\)

12839

\begin{align*} y^{\prime \prime }+a y^{2}+b x +c&=0 \\ \end{align*}

[NONE]

0.239

\(531\)

12840

\begin{align*} y^{\prime \prime }-2 y^{3}-y x +a&=0 \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.243

\(532\)

12842

\begin{align*} y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b&=0 \\ \end{align*}

[NONE]

0.263

\(533\)

12843

\begin{align*} y^{\prime \prime }+d +b x y+c y+a y^{3}&=0 \\ \end{align*}

[NONE]

0.276

\(534\)

12845

\begin{align*} y^{\prime \prime }+a \,x^{r} y^{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.247

\(535\)

12847

\begin{align*} y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}}&=0 \\ \end{align*}

[NONE]

0.648

\(536\)

12849

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

\(537\)

12850

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.625

\(538\)

12852

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right )&=0 \\ \end{align*}

[NONE]

0.930

\(539\)

12853

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right )&=0 \\ \end{align*}

[NONE]

0.729

\(540\)

12854

\begin{align*} y^{\prime \prime }&=\frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.810

\(541\)

12855

\begin{align*} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.436

\(542\)

12856

\begin{align*} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

99.761

\(543\)

12857

\begin{align*} y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

86.986

\(544\)

12858

\begin{align*} y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.622

\(545\)

12859

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n}&=0 \\ \end{align*}

[NONE]

0.337

\(546\)

12860

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.835

\(547\)

12861

\begin{align*} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.932

\(548\)

12863

\begin{align*} y^{\prime \prime }+y y^{\prime }-y^{3}+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

26.560

\(549\)

12864

\begin{align*} y^{\prime \prime }+\left (3 a +y\right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

17.812

\(550\)

12865

\begin{align*} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )&=0 \\ \end{align*}

[NONE]

0.546

\(551\)

12866

\begin{align*} y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.501

\(552\)

12867

\begin{align*} y^{\prime \prime }-3 y y^{\prime }-3 a y^{2}-4 a^{2} y-b&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

19.123

\(553\)

12868

\begin{align*} y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.501

\(554\)

12872

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.966

\(555\)

12874

\begin{align*} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.589

\(556\)

12877

\begin{align*} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{v}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.495

\(557\)

12878

\begin{align*} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

\(558\)

12881

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.589

\(559\)

12885

\begin{align*} y^{\prime \prime }&=2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.631

\(560\)

12888

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-x y^{n}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

\(561\)

12889

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+a \,x^{v} y^{n}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.385

\(562\)

12890

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+x \,{\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

\(563\)

12891

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.387

\(564\)

12892

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.572

\(565\)

12894

\begin{align*} y^{\prime \prime } x -x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.448

\(566\)

12895

\begin{align*} y^{\prime \prime } x +a \left (-y+y^{\prime } x \right )^{2}-b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.459

\(567\)

12897

\begin{align*} x^{2} y^{\prime \prime }&=a \left (y^{n}-y\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

\(568\)

12898

\begin{align*} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

\(569\)

12900

\begin{align*} x^{2} y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}-b \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.527

\(570\)

12901

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

\(571\)

12902

\begin{align*} x^{2} y^{\prime \prime }-\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.888

\(572\)

12904

\begin{align*} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.452

\(573\)

12905

\begin{align*} 2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.342

\(574\)

12906

\begin{align*} 24+12 y x +x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.773

\(575\)

12907

\begin{align*} x^{3} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.572

\(576\)

12908

\begin{align*} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 y x \right ) y^{\prime }+b +x y \left (a +3 y x -2 y^{2} x^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.940

\(577\)

12909

\begin{align*} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b&=0 \\ \end{align*}

[NONE]

2.459

\(578\)

12910

\begin{align*} x^{4} y^{\prime \prime }+a^{2} y^{n}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.376

\(579\)

12911

\begin{align*} x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.594

\(580\)

12912

\begin{align*} x^{4} y^{\prime \prime }-x^{2} y^{\prime } \left (x +y^{\prime }\right )+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.622

\(581\)

12913

\begin{align*} \left (-y+y^{\prime } x \right )^{3}+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.096

\(582\)

12914

\begin{align*} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.288

\(583\)

12915

\begin{align*} \left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right )&=0 \\ \end{align*}

[NONE]

43.652

\(584\)

12917

\begin{align*} y y^{\prime \prime }-a x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.220

\(585\)

12918

\begin{align*} y y^{\prime \prime }-a \,x^{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.271

\(586\)

12920

\begin{align*} y y^{\prime \prime }+y^{2}-a x -b&=0 \\ \end{align*}

[NONE]

0.277

\(587\)

12924

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right )&=0 \\ \end{align*}

[NONE]

0.513

\(588\)

12926

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-y f^{\prime }\left (x \right )-y^{3}&=0 \\ \end{align*}

[NONE]

0.625

\(589\)

12927

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-y f^{\prime \prime }\left (x \right )+f \left (x \right ) y^{3}-y^{4}&=0 \\ \end{align*}

[NONE]

0.477

\(590\)

12929

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+y^{3} b&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.354

\(591\)

12930

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-\left (a y-1\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

29.186

\(592\)

12931

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y-1\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

91.280

\(593\)

12932

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

3.588

\(594\)

12933

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.685

\(595\)

12934

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+f \left (x \right ) y^{2}\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.861

\(596\)

12939

\begin{align*} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{1-a}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

360.454

\(597\)

12941

\begin{align*} y y^{\prime \prime }-\frac {\left (-1+a \right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a}&=0 \\ \end{align*}

[NONE]

1.072

\(598\)

12942

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.420

\(599\)

12944

\begin{align*} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.445

\(600\)

12945

\begin{align*} \left (x -y\right ) y^{\prime \prime }-\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.528

\(601\)

12946

\begin{align*} \left (x -y\right ) y^{\prime \prime }-h \left (y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.724

\(602\)

12949

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a&=0 \\ \end{align*}

[NONE]

0.404

\(603\)

12952

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (x +2 y\right )&=0 \\ \end{align*}

[NONE]

0.332

\(604\)

12954

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3}&=0 \\ \end{align*}

[NONE]

0.347

\(605\)

12955

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b x \right ) y^{2}&=0 \\ \end{align*}

[NONE]

0.324

\(606\)

12957

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4}&=0 \\ \end{align*}

[[_Painleve, ‘4th‘]]

0.454

\(607\)

12960

\begin{align*} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

\(608\)

12964

\begin{align*} 3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\ \end{align*}

[NONE]

0.411

\(609\)

12976

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.761

\(610\)

12977

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right )&=0 \\ \end{align*}

[[_Painleve, ‘3rd‘]]

0.529

\(611\)

12978

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+y^{3} b x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.434

\(612\)

12980

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.444

\(613\)

12983

\begin{align*} x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.847

\(614\)

12986

\begin{align*} x^{2} \left (-1+y\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (-1+y\right ) y^{\prime }-2 y \left (-1+y\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.328

\(615\)

12987

\begin{align*} x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.824

\(616\)

12988

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.834

\(617\)

12989

\begin{align*} 2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.530

\(618\)

12990

\begin{align*} a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.638

\(619\)

12991

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }-x \left (x +1\right )^{2} {y^{\prime }}^{2}+2 \left (x +1\right )^{2} y y^{\prime }-a \left (2+x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.467

\(620\)

12992

\begin{align*} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.905

\(621\)

12994

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.316

\(622\)

12995

\begin{align*} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

\(623\)

12998

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.704

\(624\)

12999

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.726

\(625\)

13000

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.677

\(626\)

13001

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+f \left (x \right ) \left (1-y\right ) y y^{\prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.674

\(627\)

13008

\begin{align*} x y^{2} y^{\prime \prime }-a&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.225

\(628\)

13009

\begin{align*} \left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.015

\(629\)

13010

\begin{align*} 2 x^{2} y \left (-1+y\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (-1+y\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (-1+y\right )^{3}+c x y^{2} \left (-1+y\right )+d \,x^{2} y^{2} \left (1+y\right )&=0 \\ \end{align*}

[[_Painleve, ‘5th‘]]

1.469

\(630\)

13011

\begin{align*} \left (x +y\right ) \left (-y+y^{\prime } x \right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.300

\(631\)

13014

\begin{align*} 2 y^{3} y^{\prime \prime }+y^{4}-y^{2} a^{2} x -1&=0 \\ \end{align*}

[NONE]

0.237

\(632\)

13015

\begin{align*} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\ \end{align*}

[NONE]

0.324

\(633\)

13016

\begin{align*} 2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

721.596

\(634\)

13020

\begin{align*} \left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+d y&=0 \\ \end{align*}

[NONE]

0.651

\(635\)

13022

\begin{align*} \sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.967

\(636\)

13026

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.741

\(637\)

13027

\begin{align*} \left (-y+y^{\prime } x \right ) y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.408

\(638\)

13028

\begin{align*} \left (-y+y^{\prime } x \right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.492

\(639\)

13029

\begin{align*} a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.474

\(640\)

13030

\begin{align*} \left ({y^{\prime }}^{2}+a \left (-y+y^{\prime } x \right )\right ) y^{\prime \prime }-b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.561

\(641\)

13031

\begin{align*} \left (a \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x \right ) y^{\prime \prime }-{y^{\prime }}^{2}-1&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

10.231

\(642\)

13032

\begin{align*} {y^{\prime \prime }}^{2}-a y-b&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.040

\(643\)

13034

\begin{align*} 2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y&=0 \\ \end{align*}

[NONE]

0.037

\(644\)

13035

\begin{align*} 4 {y^{\prime }}^{2}-2 \left (y+3 y^{\prime } x \right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.546

\(645\)

13036

\begin{align*} \left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.904

\(646\)

13037

\begin{align*} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.882

\(647\)

13039

\begin{align*} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (-y+y^{\prime } x \right )^{3}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.042

\(648\)

13665

\begin{align*} y^{\prime \prime }-\left (a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.224

\(649\)

13667

\begin{align*} y^{\prime \prime }-\left (a \,x^{2}+b x c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.251

\(650\)

13669

\begin{align*} y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.220

\(651\)

13670

\begin{align*} y^{\prime \prime }-a \,x^{-2+n} \left (a \,x^{n}+n +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.207

\(652\)

13671

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.217

\(653\)

13674

\begin{align*} y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.056

\(654\)

13677

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.648

\(655\)

13678

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.431

\(656\)

13679

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.975

\(657\)

13680

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.913

\(658\)

13681

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.041

\(659\)

13682

\begin{align*} y^{\prime \prime }+a x y^{\prime }+b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.609

\(660\)

13683

\begin{align*} y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.745

\(661\)

13684

\begin{align*} y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.295

\(662\)

13689

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.109

\(663\)

13690

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.504

\(664\)

13692

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.941

\(665\)

13693

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.137

\(666\)

13698

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.185

\(667\)

13706

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.785

\(668\)

13708

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.788

\(669\)

13709

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.349

\(670\)

13710

\begin{align*} y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+x^{n -1} a n +c \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.546

\(671\)

13711

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.516

\(672\)

13712

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.635

\(673\)

13713

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.743

\(674\)

13714

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.829

\(675\)

13715

\begin{align*} y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.202

\(676\)

13719

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.411

\(677\)

13720

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n +m} a b +b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.563

\(678\)

13721

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n +m} a b +x^{m} b c +x^{n -1} a n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.804

\(679\)

13725

\begin{align*} y^{\prime \prime } x +a y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.595

\(680\)

13727

\begin{align*} y^{\prime \prime } x +\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.725

\(681\)

13729

\begin{align*} y^{\prime \prime } x +a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.776

\(682\)

13731

\begin{align*} y^{\prime \prime } x +\left (b -x \right ) y^{\prime }-a y&=0 \\ \end{align*}

[_Laguerre]

3.214

\(683\)

13732

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.454

\(684\)

13734

\begin{align*} \left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.774

\(685\)

13735

\begin{align*} y^{\prime \prime } x +\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.796

\(686\)

13739

\begin{align*} y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.676

\(687\)

13740

\begin{align*} y^{\prime \prime } x +\left (b \,x^{2} a +b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.341

\(688\)

13745

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.824

\(689\)

13746

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.278

\(690\)

13752

\begin{align*} y^{\prime \prime } x +a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.253

\(691\)

13754

\begin{align*} y^{\prime \prime } x +\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.579

\(692\)

13758

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.561

\(693\)

13759

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.945

\(694\)

13760

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.876

\(695\)

13761

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{-2+n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.445

\(696\)

13762

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+x^{n -1} a n -b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

34.444

\(697\)

13763

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.242

\(698\)

13765

\begin{align*} y^{\prime \prime } x +\left (x^{n +m} a b +a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.384

\(699\)

13767

\begin{align*} \left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.781

\(700\)

13768

\begin{align*} \left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

20.578

\(701\)

13769

\begin{align*} \left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.339

\(702\)

13775

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.031

\(703\)

13776

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.974

\(704\)

13778

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.968

\(705\)

13780

\begin{align*} x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.898

\(706\)

13781

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.760

\(707\)

13782

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.165

\(708\)

13783

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.631

\(709\)

13792

\begin{align*} x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.835

\(710\)

13794

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.943

\(711\)

13795

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.514

\(712\)

13796

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.518

\(713\)

13797

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.790

\(714\)

13799

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (b -n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.291

\(715\)

13800

\begin{align*} a_{2} x^{2} y^{\prime \prime }+\left (a_{1} x^{2}+b_{1} x \right ) y^{\prime }+\left (a_{0} x^{2}+b_{0} x +c_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

17.572

\(716\)

13802

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.921

\(717\)

13803

\begin{align*} x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.824

\(718\)

13804

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.721

\(719\)

13805

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n +2 m}-b^{2} x^{4 m +2}+a m \,x^{n -1}-m^{2}-m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.580

\(720\)

13807

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.400

\(721\)

13808

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (b +n -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.631

\(722\)

13809

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{n +2}+b \,x^{2}+c \right ) y^{\prime }+\left (a n \,x^{n +1}+x^{n} a c +b c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.618

\(723\)

13810

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+n \left (n -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

2.366

\(724\)

13811

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.944

\(725\)

13814

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

122.267

\(726\)

13815

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\nu \left (\nu +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

111.076

\(727\)

13817

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (\nu +n +1\right ) \left (\nu -n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

72.899

\(728\)

13818

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y&=0 \\ \end{align*}

[_Gegenbauer]

71.383

\(729\)

13819

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (2 a +1\right ) y^{\prime }-b \left (2 a +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

150.948

\(730\)

13820

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 a -3\right ) x y^{\prime }+\left (n +1\right ) \left (n +2 a -1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

63.750

\(731\)

13821

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

169.546

\(732\)

13822

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

170.788

\(733\)

13827

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

615.764

\(734\)

13828

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (2 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

23.880

\(735\)

13829

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

178.126

\(736\)

13830

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (c \,x^{2}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{2}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

31.159

\(737\)

13831

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 b \lambda \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

195.517

\(738\)

13832

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y&=0 \\ \end{align*}

[_Jacobi]

187.750

\(739\)

13833

\begin{align*} x \left (a +x \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

121.563

\(740\)

13834

\begin{align*} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\ \end{align*}

[_Jacobi]

48.163

\(741\)

13840

\begin{align*} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

187.519

\(742\)

13841

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (k +x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

193.937

\(743\)

13842

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-x k +x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

217.829

\(744\)

13844

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

88.050

\(745\)

13845

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

86.225

\(746\)

13846

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.774

\(747\)

13847

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.824

\(748\)

13848

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{3}+a b x -x^{2}+b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

128.622

\(749\)

13849

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x -\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

130.665

\(750\)

13851

\begin{align*} x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

180.109

\(751\)

13852

\begin{align*} x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (c \,x^{2}+\left (a \lambda +2 b \right ) x +b \lambda \right ) y^{\prime }+\lambda \left (c -2 a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

240.240

\(752\)

13855

\begin{align*} x^{2} \left (x +a_{2} \right ) y^{\prime \prime }+x \left (b_{1} x +a_{1} \right ) y^{\prime }+\left (b_{0} x +a_{0} \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

200.871

\(753\)

13856

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }+\left (\beta -2 b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

302.278

\(754\)

13857

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }-\left (x \alpha +2 b -\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

263.487

\(755\)

13858

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (-2 a \,x^{2}-\left (b +1\right ) x +k \right ) y^{\prime }+2 \left (a x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

295.620

\(756\)

13859

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+x m +k \right ) y^{\prime }+\left (-1+k \right ) \left (\left (-a k +n \right ) x +m -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

350.702

\(757\)

13860

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+x m +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

397.914

\(758\)

13861

\begin{align*} \left (a \,x^{3}+x^{2}+b \right ) y^{\prime \prime }+a^{2} x \left (x^{2}-b \right ) y^{\prime }-a^{3} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

218.358

\(759\)

13863

\begin{align*} x \left (a \,x^{2}+b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (x n +m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

367.588

\(760\)

13864

\begin{align*} x \left (x -1\right ) \left (x -a \right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +d \right )-a \right ) x +a \gamma \right ) y^{\prime }+\left (\alpha \beta x -q \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

462.582

\(761\)

13865

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }-\left (-\lambda ^{2}+x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

547.076

\(762\)

13867

\begin{align*} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+3 \left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\left (6 a x +2 b +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

380.834

\(763\)

13868

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\left (\alpha \gamma +\beta \right ) x +\beta \lambda \right ) y^{\prime }-\left (x \alpha +\beta \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1253.904

\(764\)

13869

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1282.818

\(765\)

13872

\begin{align*} x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.573

\(766\)

13875

\begin{align*} x^{4} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a \,x^{n -1}+a b \,x^{-2+n}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.899

\(767\)

13878

\begin{align*} a \,x^{2} \left (x -1\right )^{2} y^{\prime \prime }+\left (b \,x^{2}+c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.721

\(768\)

13879

\begin{align*} x^{2} \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) x y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

157.656

\(769\)

13886

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }-\left (\nu \left (\nu +1\right ) \left (x^{2}-1\right )+n^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

116.730

\(770\)

13887

\begin{align*} \left (-x^{2}+1\right )^{2} y^{\prime \prime }-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (\nu \left (\nu +1\right ) \left (-x^{2}+1\right )-\mu ^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

105.647

\(771\)

13888

\begin{align*} a \left (x^{2}-1\right )^{2} y^{\prime \prime }+b x \left (x^{2}-1\right ) y^{\prime }+\left (c \,x^{2}+d x +e \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

153.499

\(772\)

13891

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-\left (b \,x^{n +1}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.721

\(773\)

13892

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.306

\(774\)

13896

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

119.495

\(775\)

13897

\begin{align*} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+\left (\left (x^{2}+1\right ) \left (a^{2} x^{2}-\lambda \right )+m^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

128.777

\(776\)

13901

\begin{align*} x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.436

\(777\)

13902

\begin{align*} x^{n} y^{\prime \prime }+a x y^{\prime }-\left (b^{2} x^{n}+2 b \,x^{n -1}+a b x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.287

\(778\)

13904

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (-1+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.950

\(779\)

13905

\begin{align*} x^{n} y^{\prime \prime }+\left (2 x^{n -1}+a \,x^{2}+b x \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

29.496

\(780\)

13906

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.323

\(781\)

13907

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+a^{2} b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

55.085

\(782\)

13908

\begin{align*} x^{n} y^{\prime \prime }+\left (a \,x^{n +m}+1\right ) y^{\prime }+a \,x^{m} \left (1+m \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.285

\(783\)

13909

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.661

\(784\)

13911

\begin{align*} x \left (x^{n}+1\right ) y^{\prime \prime }+\left (\left (a -b \right ) x^{n}+a -n \right ) y^{\prime }+b \left (1-a \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.546

\(785\)

13912

\begin{align*} x \left (x^{2 n}+a \right ) y^{\prime \prime }+\left (x^{2 n}+a -a n \right ) y^{\prime }-b^{2} x^{2 n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

87.742

\(786\)

13913

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a^{2} \left (n +1\right ) x^{2 n}+n -1\right ) y^{\prime }-\nu \left (\nu +1\right ) a^{2} n^{2} x^{2 n} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

142.587

\(787\)

13914

\begin{align*} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

166.926

\(788\)

13915

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{-2+n} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.824

\(789\)

13916

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.697

\(790\)

13917

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

60.676

\(791\)

13918

\begin{align*} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-x^{n -1} a n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

32.040

\(792\)

13919

\begin{align*} x^{2} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (n +1\right ) x \left (a^{2} x^{2 n}-b^{2}\right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

247.144

\(793\)

13920

\begin{align*} \left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-b n +\beta \right ) x^{-2+n}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

386.540

\(794\)

13922

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

103.228

\(795\)

13923

\begin{align*} 2 \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+a n \,x^{n -1} b m \,x^{m -1} y^{\prime }+d y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

139.171

\(796\)

13927

\begin{align*} y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.892

\(797\)

13928

\begin{align*} y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.086

\(798\)

13929

\begin{align*} y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.959

\(799\)

13930

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.318

\(800\)

13931

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.385

\(801\)

13935

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.053

\(802\)

13936

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.920

\(803\)

13938

\begin{align*} y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.212

\(804\)

13939

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{\mu x} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.882

\(805\)

13940

\begin{align*} y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.921

\(806\)

13942

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.818

\(807\)

13944

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.277

\(808\)

13945

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.018

\(809\)

13946

\begin{align*} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.123

\(810\)

13947

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.546

\(811\)

13949

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.234

\(812\)

13950

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.281

\(813\)

13951

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.256

\(814\)

13952

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}-\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 \mu x}+c \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.681

\(815\)

13953

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \mu x}+d \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.868

\(816\)

13954

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.711

\(817\)

13955

\begin{align*} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.416

\(818\)

13957

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+{\mathrm e}^{\lambda x} a c +{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.465

\(819\)

13958

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b \,{\mathrm e}^{\mu x}-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+c \,{\mathrm e}^{2 \lambda x}+{\mathrm e}^{2 \mu x} b^{2}+b \left (\mu -\lambda \right ) {\mathrm e}^{\mu x}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.568

\(820\)

13959

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+a \lambda \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}-2 \lambda \right ) y^{\prime }+a^{2} b \lambda \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.839

\(821\)

13960

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.008

\(822\)

13964

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+k \left (\left (-a k +c \right ) {\mathrm e}^{\lambda x}+d -b k \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.156

\(823\)

13965

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.265

\(824\)

14139

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.231

\(825\)

14154

\begin{align*} x^{2} y^{\prime \prime }-2 n x \left (x +1\right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.879

\(826\)

14155

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} \left (x +1\right ) y^{\prime }+n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

18.319

\(827\)

14175

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.478

\(828\)

14176

\begin{align*} x^{3} y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.603

\(829\)

14177

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2}-y^{2} x^{2} \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

0.365

\(830\)

14558

\begin{align*} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.095

\(831\)

14834

\begin{align*} \left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

51.918

\(832\)

14838

\begin{align*} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.120

\(833\)

14841

\begin{align*} \left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.322

\(834\)

14842

\begin{align*} x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x&=0 \\ \end{align*}

[_Lienard]

2.102

\(835\)

14843

\begin{align*} f \left (t \right ) x^{\prime \prime }+x g \left (t \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.120

\(836\)

14865

\begin{align*} x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

19.426

\(837\)

14866

\begin{align*} x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.170

\(838\)

14867

\begin{align*} x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

9.444

\(839\)

14868

\begin{align*} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.487

\(840\)

14869

\begin{align*} x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.566

\(841\)

14953

\begin{align*} \left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

\(842\)

15127

\begin{align*} y y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

15.509

\(843\)

15137

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y&=1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.746

\(844\)

15144

\begin{align*} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=y x \\ \end{align*}

[NONE]

0.805

\(845\)

15151

\begin{align*} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right )&=x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.052

\(846\)

15152

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.171

\(847\)

15153

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.767

\(848\)

15154

\begin{align*} y^{\prime \prime } x +2 x^{2} y^{\prime }+\sin \left (x \right ) y&=\sinh \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

31.898

\(849\)

15155

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y&=1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.437

\(850\)

15156

\begin{align*} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.583

\(851\)

15158

\begin{align*} x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.678

\(852\)

15159

\begin{align*} y^{\prime \prime }+\frac {k x}{y^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.262

\(853\)

15165

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.878

\(854\)

15167

\begin{align*} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

228.016

\(855\)

15172

\begin{align*} y^{\prime \prime } x +\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

9.019

\(856\)

15184

\begin{align*} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}}&=\frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.069

\(857\)

15255

\begin{align*} t^{2} y^{\prime \prime }-6 y^{\prime } t +\sin \left (2 t \right ) y&=\ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.986

\(858\)

15256

\begin{align*} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t}&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.109

\(859\)

15257

\begin{align*} y^{\prime \prime }+y^{\prime } t -y \ln \left (t \right )&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.892

\(860\)

15258

\begin{align*} t^{3} y^{\prime \prime }-2 y^{\prime } t +y&=t^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.648

\(861\)

15319

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

87.602

\(862\)

15479

\begin{align*} x^{\prime \prime }+x^{\prime }+x-x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

13.886

\(863\)

15480

\begin{align*} x^{\prime \prime }+x^{\prime }+x+x^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.395

\(864\)

15523

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.155

\(865\)

15657

\begin{align*} \sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\ y \left (-2\right ) &= 3 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.524

\(866\)

15658

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right )&=x \,{\mathrm e}^{x} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.922

\(867\)

16159

\begin{align*} y^{2} y^{\prime \prime }&=8 x^{2} \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.325

\(868\)

16435

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.411

\(869\)

16436

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.452

\(870\)

16437

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }&=4 y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.348

\(871\)

16438

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+4 y&=y^{3} \\ \end{align*}

[NONE]

0.523

\(872\)

16959

\begin{align*} x {y^{\prime \prime }}^{2}+2 y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.055

\(873\)

16960

\begin{align*} x^{\prime \prime }+2 \sin \left (x\right )&=\sin \left (2 t \right ) \\ \end{align*}

[NONE]

1.692

\(874\)

17377

\begin{align*} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.765

\(875\)

17421

\begin{align*} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.047

\(876\)

17422

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.046

\(877\)

17813

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

81.432

\(878\)

18285

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=8 \,{\mathrm e}^{x}+9 \\ y \left (-\infty \right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.560

\(879\)

18287

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \\ y \left (-\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.905

\(880\)

18336

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }+y&=\frac {6+x}{x^{2}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

38.008

\(881\)

18338

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=\left (x -1\right )^{2} {\mathrm e}^{x} \\ y \left (-\infty \right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.019

\(882\)

18339

\begin{align*} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y&=\frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.381

\(883\)

18340

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y&=4 \,{\mathrm e}^{x} \\ y \left (-\infty \right ) &= 0 \\ y^{\prime }\left (-1\right ) &= -{\mathrm e}^{-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.715

\(884\)

18341

\begin{align*} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+y x&=2 \ln \left (x \right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

82.930

\(885\)

18342

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y&=2 x -2 \\ y \left (\infty \right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

40.655

\(886\)

18347

\begin{align*} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

18.078

\(887\)

18349

\begin{align*} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.875

\(888\)

18352

\begin{align*} x^{\prime \prime }-x^{\prime }+x-x^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

51.343

\(889\)

18356

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2 \pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.896

\(890\)

18719

\begin{align*} y^{\prime \prime }+y^{\prime }+y+y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.286

\(891\)

18720

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y&=0 \\ \end{align*}

[_Gegenbauer]

112.118

\(892\)

18722

\begin{align*} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Van_der_Pol]

9.817

\(893\)

18731

\begin{align*} \left (t -1\right ) y^{\prime \prime }-3 y^{\prime } t +4 y&=\sin \left (t \right ) \\ y \left (-2\right ) &= 2 \\ y^{\prime }\left (-2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

7.102

\(894\)

18732

\begin{align*} t \left (t -4\right ) y^{\prime \prime }+3 y^{\prime } t +4 y&=2 \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

111.697

\(895\)

18733

\begin{align*} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right )&=0 \\ y \left (2\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.115

\(896\)

18734

\begin{align*} \left (x +3\right ) y^{\prime \prime }+y^{\prime } x +y \ln \left (x \right )&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.377

\(897\)

18735

\begin{align*} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y&=0 \\ y \left (3\right ) &= 1 \\ y^{\prime }\left (3\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.186

\(898\)

18737

\begin{align*} y^{\prime \prime }-\frac {t}{y}&=\frac {1}{\pi } \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[NONE]

0.339

\(899\)

18745

\begin{align*} a y^{\prime \prime }+b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.156

\(900\)

18857

\begin{align*} y^{\prime \prime }+y+\frac {y^{3}}{5}&=\cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

0.987

\(901\)

18858

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5}&=\cos \left (w t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[NONE]

1.050

\(902\)

19151

\begin{align*} n \,x^{3} y^{\prime \prime }&=\left (-y^{\prime } x +y\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.924

\(903\)

19152

\begin{align*} y^{2} \left (x^{2} y^{\prime \prime }-y^{\prime } x +y\right )&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.646

\(904\)

19153

\begin{align*} x^{2} y^{2} y^{\prime \prime }-3 y^{\prime } y^{2} x +4 y^{3}+x^{6}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.714

\(905\)

19154

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1.504

\(906\)

19155

\begin{align*} x \left (x^{2} y^{\prime }+2 y x \right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1&=0 \\ \end{align*}

[NONE]

4.698

\(907\)

19158

\begin{align*} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x&=4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.708

\(908\)

19166

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

99.883

\(909\)

19177

\begin{align*} y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )}&={\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.214

\(910\)

19214

\begin{align*} y^{\prime \prime }&=x +y^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[NONE]

0.328

\(911\)

19215

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y^{2}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_Emden, _modified]]

15.248

\(912\)

19393

\begin{align*} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime }&=2 y x -{\mathrm e}^{y}-x \\ \end{align*}

[NONE]

0.911

\(913\)

19458

\begin{align*} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.861

\(914\)

19493

\begin{align*} y^{\prime \prime }+3 y^{\prime } x +x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.936

\(915\)

19658

\begin{align*} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

47.033

\(916\)

19702

\begin{align*} x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.869

\(917\)

19705

\begin{align*} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.643

\(918\)

19707

\begin{align*} v^{\prime \prime }&=\left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \\ \end{align*}

[[_2nd_order, _missing_x]]

6.285

\(919\)

19709

\begin{align*} \sqrt {y^{\prime }+y}&=\left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \\ \end{align*}

[NONE]

2.279

\(920\)

19783

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime }&=y^{2} \left (1+y^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

13.201

\(921\)

20100

\begin{align*} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

27.771

\(922\)

20120

\begin{align*} \sqrt {x}\, y^{\prime \prime }+2 y^{\prime } x +3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.555

\(923\)

20121

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }&=x y^{2} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

0.993

\(924\)

20151

\begin{align*} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

1.806

\(925\)

20178

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.490

\(926\)

20191

\begin{align*} y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.517

\(927\)

20202

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.539

\(928\)

20584

\begin{align*} 2 x^{2} y y^{\prime \prime }+y^{2}&=x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.457

\(929\)

20585

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.415

\(930\)

20586

\begin{align*} x^{4} y^{\prime \prime }&=\left (x^{3}+2 y x \right ) y^{\prime }-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.868

\(931\)

20587

\begin{align*} x^{4} y^{\prime \prime }-x^{3} y^{\prime }&=x^{2} {y^{\prime }}^{2}-4 y^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.098

\(932\)

20588

\begin{align*} x^{2} y^{\prime \prime }+4 y^{2}-6 y&=x^{4} {y^{\prime }}^{2} \\ \end{align*}

[NONE]

0.547

\(933\)

20619

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.868

\(934\)

20649

\begin{align*} \left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.379

\(935\)

20672

\begin{align*} y^{\prime \prime } x +\left (x^{2}+1\right ) y^{\prime }+2 y x&=2 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

36.316

\(936\)

20758

\begin{align*} 2 x^{2} y y^{\prime \prime }+4 y^{2}&=x^{2} {y^{\prime }}^{2}+2 y y^{\prime } x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.627

\(937\)

20764

\begin{align*} \sqrt {x}\, y^{\prime \prime }+2 y^{\prime } x +3 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.942

\(938\)

20766

\begin{align*} 2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right )&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

8.912

\(939\)

20768

\begin{align*} y+3 y^{\prime } x +2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.121

\(940\)

20769

\begin{align*} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

0.613

\(941\)

20777

\begin{align*} y^{\prime }-y y^{\prime \prime }&=n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \\ \end{align*}

[[_2nd_order, _missing_x]]

125.630

\(942\)

20780

\begin{align*} x^{4} y^{\prime \prime }&=\left (-y^{\prime } x +y\right )^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.285

\(943\)

20781

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=x^{2} y^{\prime }-y^{2} \\ \end{align*}

[NONE]

0.707

\(944\)

20786

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.368

\(945\)

20788

\begin{align*} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.492

\(946\)

20805

\begin{align*} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-\cot \left (x \right ) y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.518

\(947\)

21106

\begin{align*} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.315

\(948\)

21107

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

8.681

\(949\)

21129

\begin{align*} x^{\prime \prime }+2 x^{\prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (\infty \right ) &= a \\ \end{align*}

[[_2nd_order, _missing_x]]

7.836

\(950\)

21156

\begin{align*} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.107

\(951\)

21157

\begin{align*} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.864

\(952\)

21159

\begin{align*} x^{\prime \prime }-p \left (t \right ) x&=q \left (t \right ) \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.189

\(953\)

21160

\begin{align*} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.829

\(954\)

21167

\begin{align*} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.423

\(955\)

21168

\begin{align*} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.287

\(956\)

21275

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[_Lienard]

3.726

\(957\)

21276

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-1\right ) x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[_Bessel]

26.108

\(958\)

21277

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Bessel]

26.922

\(959\)

21279

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=\lambda x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.900

\(960\)

21322

\begin{align*} x^{\prime \prime }+4 x^{3}&=0 \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.290

\(961\)

21324

\begin{align*} -x^{\prime \prime }&=1-x-x^{2} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

134.207

\(962\)

21325

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.255

\(963\)

21326

\begin{align*} -x^{\prime \prime }+x&={\mathrm e}^{-x^{2}} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.453

\(964\)

21327

\begin{align*} -x^{\prime \prime }&=\frac {1}{\sqrt {x^{2}+1}}-x \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.668

\(965\)

21328

\begin{align*} -x^{\prime \prime }&=2 x-x^{2} \\ x \left (0\right ) &= 0 \\ x \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

30.702

\(966\)

21329

\begin{align*} -x^{\prime \prime }&=\arctan \left (x\right ) \\ x \left (0\right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

212.669

\(967\)

21549

\begin{align*} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.681

\(968\)

21569

\begin{align*} y^{\prime \prime }-2 s y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

\(969\)

21616

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

94.733

\(970\)

21734

\begin{align*} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 y x&=0 \\ \end{align*}

[NONE]

2.941

\(971\)

21951

\begin{align*} s^{2} t^{\prime \prime }+s t t^{\prime }&=s \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.605

\(972\)

21954

\begin{align*} {y^{\prime \prime }}^{2}-3 y y^{\prime }+y x&=0 \\ \end{align*}

[NONE]

0.051

\(973\)

21958

\begin{align*} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

829.567

\(974\)

21959

\begin{align*} {y^{\prime \prime }}^{{3}/{2}}+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.126

\(975\)

21969

\begin{align*} y^{\prime \prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.030

\(976\)

22077

\begin{align*} 2 y^{\prime \prime } x +x^{2} y^{\prime }-\sin \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.492

\(977\)

22081

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (x +1\right ) y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.079

\(978\)

22086

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +y&=4 x y^{2} \\ \end{align*}

[NONE]

0.315

\(979\)

22088

\begin{align*} y y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

63.295

\(980\)

22288

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.570

\(981\)

22296

\begin{align*} y^{\prime \prime }+y x&=\sin \left (y^{\prime \prime }\right ) \\ \end{align*}

[NONE]

0.564

\(982\)

22770

\begin{align*} \left (r^{2}+r \right ) R^{\prime \prime }+r R^{\prime }-n \left (n +1\right ) R&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.697

\(983\)

23106

\begin{align*} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x}&=\frac {y^{3}}{x^{3}} \\ \end{align*}

[NONE]

0.537

\(984\)

23257

\begin{align*} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.885

\(985\)

23278

\begin{align*} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.694

\(986\)

23287

\begin{align*} y^{\prime \prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.462

\(987\)

23289

\begin{align*} \left (1-x \right ) y^{\prime \prime }-y^{\prime } x +{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.786

\(988\)

23290

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +y&=2 \\ y \left (\frac {3 \pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {3 \pi }{4}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.161

\(989\)

23294

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+3 y&=1 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.898

\(990\)

23295

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.088

\(991\)

23297

\begin{align*} 2 y^{\prime \prime } x -7 \cos \left (x \right ) y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.175

\(992\)

23298

\begin{align*} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.252

\(993\)

23299

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.030

\(994\)

23300

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

156.558

\(995\)

23754

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= B \\ \end{align*}

[[_2nd_order, _missing_x]]

4.756

\(996\)

23757

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.983

\(997\)

24043

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.450

\(998\)

24572

\begin{align*} y^{\prime \prime }+y&=x^{3} \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.465

\(999\)

25086

\begin{align*} y^{\prime \prime }-y y^{\prime }&=6 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

24.308

\(1000\)

25182

\begin{align*} y^{\prime \prime }+y^{\prime } t +\left (t^{2}+1\right )^{2} y^{2}&=0 \\ \end{align*}

[NONE]

0.500

\(1001\)

25184

\begin{align*} y^{\prime \prime }+\sqrt {y^{\prime }}+y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.428

\(1002\)

25185

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.635

\(1003\)

25187

\begin{align*} y^{\prime \prime }+2 y+t \sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.696

\(1004\)

25188

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.048

\(1005\)

25212

\begin{align*} \sin \left (t \right ) y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= y_{1} \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.884

\(1006\)

25213

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-y^{\prime } t +t^{2} y&=\cos \left (t \right ) \\ y \left (0\right ) &= y_{1} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

12.048

\(1007\)

25214

\begin{align*} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y&=0 \\ y \left (10\right ) &= y_{1} \\ y^{\prime }\left (10\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.005

\(1008\)

25215

\begin{align*} t \left (t^{2}-4\right ) y^{\prime \prime }+y&={\mathrm e}^{t} \\ y \left (1\right ) &= y_{1} \\ y^{\prime }\left (1\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

26.911

\(1009\)

25217

\begin{align*} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.332

\(1010\)

25236

\begin{align*} t^{2} y^{\prime \prime }-4 y^{\prime } t +6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.171

\(1011\)

25261

\begin{align*} \left (\cos \left (2 t \right )+1\right ) y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.217

\(1012\)

25648

\begin{align*} \left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

10.152

\(1013\)

25651

\begin{align*} u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\ \end{align*}

[NONE]

1.778

\(1014\)

25655

\begin{align*} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

36.095

\(1015\)

25728

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.987

\(1016\)

25729

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y^{\prime }\left (\frac {\pi }{3}\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.812

\(1017\)

25750

\begin{align*} y^{\prime \prime }+y \sec \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.833