2.3.41 Problems 4001 to 4100

Table 2.613: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

4001

3337

\begin{align*} y^{\prime }&=3 x +\frac {y}{x} \\ y \left (1\right ) &= 3 \\ \end{align*}
Series expansion around \(x=1\).

0.312

4002

7152

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}+1&=0 \\ \end{align*}

0.312

4003

8627

\begin{align*} y^{\prime \prime }-6 y^{\prime }+5 y&=29 \cos \left (2 t \right ) \\ y \left (0\right ) &= {\frac {16}{5}} \\ y^{\prime }\left (0\right ) &= {\frac {31}{5}} \\ \end{align*}
Using Laplace transform method.

0.312

4004

11046

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y&=0 \\ \end{align*}

0.312

4005

14635

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime }&=3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \\ \end{align*}

0.312

4006

16024

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.312

4007

17650

\begin{align*} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 y^{\prime } x -17 y&=0 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

0.312

4008

18652

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.312

4009

18915

\begin{align*} y_{1}^{\prime }&=2 y_{1}-64 y_{2} \\ y_{2}^{\prime }&=y_{1}-14 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.312

4010

19686

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=x+2 y \\ \end{align*}

0.312

4011

23061

\begin{align*} \sin \left (\theta \right )^{2} r^{\prime }&=-b \cos \left (\theta \right ) \\ \end{align*}

0.312

4012

23771

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.312

4013

1

\begin{align*} y^{\prime }&=2 x +1 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.313

4014

968

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2} \\ x_{2}^{\prime }&=6 x_{1}-x_{2} \\ \end{align*}

0.313

4015

969

\begin{align*} x_{1}^{\prime }&=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.313

4016

7496

\begin{align*} y^{3}-x y^{2}+2 x^{2} y y^{\prime }&=0 \\ \end{align*}

0.313

4017

9028

\begin{align*} 2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

0.313

4018

9652

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.313

4019

10937

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y&=0 \\ \end{align*}

0.313

4020

13062

\begin{align*} x^{\prime }&=a x-y \\ y^{\prime }&=x+a y \\ \end{align*}

0.313

4021

14979

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.313

4022

16421

\begin{align*} x y^{\prime \prime \prime }+2 y^{\prime \prime }&=6 x \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= 4 \\ \end{align*}

0.313

4023

16985

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x} \\ \end{align*}

0.313

4024

17649

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

0.313

4025

18374

\begin{align*} y^{\prime \prime }+y x&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.313

4026

18890

\begin{align*} y^{\prime \prime }+4 y&=3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.313

4027

23444

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.313

4028

23839

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\ \end{align*}

0.313

4029

25514

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.313

4030

1488

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.314

4031

4551

\begin{align*} x^{\prime }-x-2 y&=16 \,{\mathrm e}^{t} t \\ 2 x-y^{\prime }-2 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.314

4032

5494

\begin{align*} x^{2} {y^{\prime }}^{2}&=a^{2} \\ \end{align*}

0.314

4033

9353

\begin{align*} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.314

4034

9355

\begin{align*} y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.314

4035

19659

\begin{align*} x^{\prime }&=3 t^{2}+4 t \\ x \left (1\right ) &= 0 \\ \end{align*}

0.314

4036

21627

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.314

4037

22199

\begin{align*} y^{\prime \prime }-y^{\prime } x&={\mathrm e}^{-x} \\ \end{align*}
Series expansion around \(x=0\).

0.314

4038

23609

\begin{align*} x^{\prime }&=2 x \\ y^{\prime }&=-3 y \\ \end{align*}

0.314

4039

442

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.315

4040

551

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=t \,{\mathrm e}^{-t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.315

4041

2240

\begin{align*} y_{1}^{\prime }&=-\frac {4 y_{1}}{5}+\frac {3 y_{2}}{5} \\ y_{2}^{\prime }&=-\frac {2 y_{1}}{5}-\frac {11 y_{2}}{5} \\ \end{align*}

0.315

4042

6472

\begin{align*} 2 y y^{\prime \prime }&=4 y^{2} \left (x +2 y\right )+{y^{\prime }}^{2} \\ \end{align*}

0.315

4043

6871

\begin{align*} u^{\prime }+b u^{2}&=\frac {c}{x^{4}} \\ \end{align*}

0.315

4044

10797

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y&=0 \\ \end{align*}

0.315

4045

15460

\begin{align*} x^{\prime }&=12 x+18 y \\ y^{\prime }&=-8 x-12 y \\ \end{align*}

0.315

4046

16029

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.315

4047

16670

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=30 x \cos \left (2 x \right ) \\ \end{align*}

0.315

4048

18657

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-5 x+4 y \\ \end{align*}

0.315

4049

18914

\begin{align*} y_{1}^{\prime }&=-4 y_{1}-y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

0.315

4050

20540

\begin{align*} y^{\prime \prime \prime } \csc \left (x \right )^{2}&=1 \\ \end{align*}

0.315

4051

22086

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +y&=4 x y^{2} \\ \end{align*}

0.315

4052

22853

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.315

4053

23418

\begin{align*} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (2+4 x \right ) y&=0 \\ \end{align*}

0.315

4054

23666

\begin{align*} y^{\prime }&=3 y \\ \end{align*}
Series expansion around \(x=0\).

0.315

4055

657

\begin{align*} y^{\prime }&=\frac {10}{x^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

0.316

4056

2029

\begin{align*} x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.316

4057

2638

\begin{align*} t \left (-2+t \right )^{2} y^{\prime \prime }+y^{\prime } t +y&=0 \\ \end{align*}
Series expansion around \(t=2\).

0.316

4058

8575

\begin{align*} y^{\prime }+4 y&=1 \\ y \left (0\right ) &= {\frac {5}{4}} \\ \end{align*}
Series expansion around \(x=0\).

0.316

4059

10641

\begin{align*} 4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (4 x +1\right ) y^{\prime }-\left (49+27 x \right ) y&=0 \\ \end{align*}

0.316

4060

10766

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}

0.316

4061

12994

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.316

4062

14877

\begin{align*} y^{\prime }&=x -\frac {1}{3} x^{3} \\ y \left (-1\right ) &= 1 \\ \end{align*}

0.316

4063

15011

\begin{align*} x^{\prime }&=-3 x-y \\ y^{\prime }&=x-5 y \\ \end{align*}

0.316

4064

16190

\begin{align*} y^{\prime }&=\frac {1}{x^{2}+1} \\ y \left (1\right ) &= 0 \\ \end{align*}

0.316

4065

18911

\begin{align*} y_{1}^{\prime }&=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }&=6 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

0.316

4066

23802

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=-3 y \\ \end{align*}

0.316

4067

24778

\begin{align*} x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

0.316

4068

7623

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.317

4069

7905

\begin{align*} y+x \left (x^{2} y-1\right ) y^{\prime }&=0 \\ \end{align*}

0.317

4070

16165

\begin{align*} \sqrt {x +4}\, y^{\prime }&=1 \\ \end{align*}

0.317

4071

18903

\begin{align*} y^{\prime \prime }+w^{2} y&=\cos \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.317

4072

25330

\begin{align*} \left (t -1\right ) y^{\prime \prime }-y^{\prime } t +y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.317

4073

1372

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.318

4074

4166

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2} \\ y_{2}^{\prime }&=3 y_{2}-y_{1} \\ \end{align*}

0.318

4075

16164

\begin{align*} y^{\prime } x +\sqrt {x}&=2 \\ \end{align*}

0.318

4076

19244

\begin{align*} y^{\prime }&=\arcsin \left (x \right ) \\ \end{align*}

0.318

4077

20712

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

0.318

4078

22198

\begin{align*} y^{\prime \prime }-\left (x -1\right ) y^{\prime }&=x^{2}-2 x \\ \end{align*}
Series expansion around \(x=1\).

0.318

4079

25244

\begin{align*} -t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Using Laplace transform method.

0.318

4080

413

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}
Series expansion around \(x=0\).

0.319

4081

971

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\ \end{align*}

0.319

4082

1096

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 \alpha y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.319

4083

1377

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.319

4084

4518

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=8 \sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.319

4085

4553

\begin{align*} x^{\prime }-4 x+3 y&=\sin \left (t \right ) \\ 2 x+y^{\prime }-y&=2 \cos \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= x_{0} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

0.319

4086

7633

\begin{align*} z^{\prime }-x^{2} z&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.319

4087

10561

\begin{align*} x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 y x&=0 \\ \end{align*}

0.319

4088

10597

\begin{align*} x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y&=0 \\ \end{align*}

0.319

4089

13157

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\)

N/A

N/A

N/A

0.319

4090

14740

\begin{align*} \left (2 x^{2}-3\right ) y^{\prime \prime }-2 y^{\prime } x +y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Series expansion around \(x=0\).

0.319

4091

16183

\begin{align*} y^{\prime }&=\sin \left (\frac {x}{2}\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}

0.319

4092

17706

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.319

4093

21684

\begin{align*} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.319

4094

1417

\begin{align*} x_{1}^{\prime }&=4 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=8 x_{1}-4 x_{2} \\ \end{align*}

0.320

4095

8483

\begin{align*} 2 y-y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.320

4096

15716

\begin{align*} 2 y+y^{\prime }&=\left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.320

4097

22188

\begin{align*} y^{\prime \prime }-2 y x&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 6 \\ \end{align*}
Series expansion around \(x=2\).

0.320

4098

23699

\begin{align*} y^{\prime \prime }-y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.320

4099

546

\begin{align*} x^{\prime \prime \prime \prime }-x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.321

4100

3324

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

0.321