| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 4901 |
\begin{align*}
{y^{\prime }}^{2}-4 y^{\prime }+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 4902 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 4903 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| 4904 |
\begin{align*}
\left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4905 |
\begin{align*}
\frac {y x +1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.384 |
|
| 4906 |
\begin{align*}
w^{\prime }+w x&={\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4907 |
\begin{align*}
y^{\prime \prime }+2 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4908 |
\begin{align*}
y^{\prime }+6 y&={\mathrm e}^{4 t} \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4909 |
\begin{align*}
y^{\prime }&=\frac {x}{\sqrt {x^{2}+5}} \\
y \left (2\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4910 |
\begin{align*}
y^{\prime }+\frac {y}{x -1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4911 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| 4912 |
\begin{align*}
y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4913 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } t +\lambda y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4914 |
\begin{align*}
x {y^{\prime }}^{3}&=y y^{\prime }+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 4915 |
\begin{align*}
y^{\prime \prime }+4 y&=10 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4916 |
\begin{align*}
y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )-y f^{\prime }\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4917 |
\begin{align*}
\frac {t y^{\prime }}{y}+1+\ln \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4918 |
\begin{align*}
x^{\prime }&=7 x+y \\
y^{\prime }&=-4 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4919 |
\begin{align*}
y^{\prime } x +y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 4920 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+a \,x^{v} y^{n}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.385 |
|
| 4921 |
\(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.385 |
|
| 4922 |
\begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 4923 |
\begin{align*}
y^{\prime \prime }+9 y&=24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4924 |
\begin{align*}
x^{\prime }+y^{\prime }&=y \\
x^{\prime }-y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4925 |
\begin{align*}
y^{\prime }+\frac {2 y}{2 x -1}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4926 |
\begin{align*}
x^{\prime }&=-x-4 y \\
y^{\prime }&=x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4927 |
\begin{align*}
y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4928 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.385 |
|
| 4929 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=3 t^{3}-9 t^{2}-5 t +1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4930 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4931 |
\begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| 4932 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4933 |
\begin{align*}
y^{\prime }-y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4934 |
\begin{align*}
x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.386 |
|
| 4935 |
\begin{align*}
y^{\prime }&=\frac {x -1}{x +1} \\
y \left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4936 |
\begin{align*}
y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4937 |
\begin{align*}
y^{\prime \prime \prime }-27 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 6 \\
y^{\prime \prime }\left (0\right ) &= 18 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4938 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4939 |
\begin{align*}
y^{\prime }&=t \ln \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| 4940 |
\begin{align*}
{y^{\prime }}^{2}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 4941 |
\begin{align*}
x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.387 |
|
| 4942 |
\begin{align*}
y^{\prime }&=4 y^{2}-3 y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 4943 |
\begin{align*}
y&=y^{\prime } x -2 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 4944 |
\begin{align*}
y^{\prime }&=x -y \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 4945 |
\begin{align*}
x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.387 |
|
| 4946 |
\begin{align*}
b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.387 |
|
| 4947 |
\begin{align*}
\left (x +1\right ) y^{\prime }-n y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 4948 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| 4949 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=6 x+3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4950 |
\begin{align*}
x^{\prime }&=\frac {y}{2} \\
y^{\prime }&=-8 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4951 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+7 y&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4952 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4953 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4954 |
\begin{align*}
\left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.388 |
|
| 4955 |
\begin{align*}
y y^{\prime \prime }&=-y^{2} x^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.388 |
|
| 4956 |
\begin{align*}
36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.388 |
|
| 4957 |
\begin{align*}
y^{\prime }&=1-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4958 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4959 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-2 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4960 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| 4961 |
\begin{align*}
\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\
y \left (3\right ) &= 2 \\
y^{\prime }\left (3\right ) &= 0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4962 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4963 |
\begin{align*}
\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 4964 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4965 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 4966 |
\begin{align*}
4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.389 |
|
| 4967 |
\begin{align*}
x^{2} y^{\prime \prime }&=a \left (y^{n}-y\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.389 |
|
| 4968 |
\begin{align*}
y^{\prime }&=f \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4969 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4970 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+40 y&=122 \,{\mathrm e}^{-3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4971 |
\begin{align*}
y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4972 |
\begin{align*}
y^{\prime }-{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4973 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=-8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4974 |
\begin{align*}
y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| 4975 |
\begin{align*}
\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4976 |
\begin{align*}
x^{\prime \prime }+4 x&=f \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4977 |
\begin{align*}
x_{1}^{\prime }&=6 x_{1}-7 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4978 |
\begin{align*}
t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} Series expansion around \(t=1\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4979 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4980 |
\begin{align*}
y^{\prime }&=\sin \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4981 |
\begin{align*}
x y y^{\prime \prime }&=x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.390 |
|
| 4982 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4983 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.390 |
|
| 4984 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.390 |
|
| 4985 |
\begin{align*}
y-y^{\prime } t&=-4 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4986 |
\begin{align*}
x^{\prime }&=0 \\
y^{\prime }&=-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4987 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -5 \\
x_{2} \left (0\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4988 |
\begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4989 |
\begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 5 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| 4990 |
\begin{align*}
y^{2}-2 y y^{\prime } x +{y^{\prime }}^{2} \left (x^{2}-1\right )&=m \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.390 |
|
| 4991 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4992 |
\begin{align*}
x^{\prime }-2 x-y&=2 \,{\mathrm e}^{t} \\
y^{\prime }-2 y-4 z&=4 \,{\mathrm e}^{2 t} \\
x-z^{\prime }-z&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 9 \\
y \left (0\right ) &= 3 \\
z \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4993 |
\begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4994 |
\begin{align*}
y^{\prime } x +y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.391 |
|
| 4995 |
\begin{align*}
a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4996 |
\begin{align*}
x+3 t x^{2} x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4997 |
\begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=-2 x+4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4998 |
\begin{align*}
x^{\prime }&=2 x+3 y \\
y^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 4999 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=8 x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| 5000 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= -2 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.391 |
|