2.3.50 Problems 4901 to 5000

Table 2.631: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

4901

21855

\begin{align*} {y^{\prime }}^{2}-4 y^{\prime }+2&=0 \\ \end{align*}

0.383

4902

22865

\begin{align*} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.383

4903

23588

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.383

4904

5595

\begin{align*} \left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\ \end{align*}

0.384

4905

6954

\begin{align*} \frac {y x +1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}}&=0 \\ \end{align*}

0.384

4906

7657

\begin{align*} w^{\prime }+w x&={\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

0.384

4907

7841

\begin{align*} y^{\prime \prime }+2 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.384

4908

9601

\begin{align*} y^{\prime }+6 y&={\mathrm e}^{4 t} \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.384

4909

16189

\begin{align*} y^{\prime }&=\frac {x}{\sqrt {x^{2}+5}} \\ y \left (2\right ) &= 7 \\ \end{align*}

0.384

4910

16825

\begin{align*} y^{\prime }+\frac {y}{x -1}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.384

4911

24045

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\ \end{align*}
Using Laplace transform method.

0.384

4912

443

\begin{align*} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

0.385

4913

2618

\begin{align*} y^{\prime \prime }-2 y^{\prime } t +\lambda y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.385

4914

3312

\begin{align*} x {y^{\prime }}^{3}&=y y^{\prime }+1 \\ \end{align*}

0.385

4915

3942

\begin{align*} y^{\prime \prime }+4 y&=10 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.385

4916

4650

\begin{align*} y^{\prime }&=f \left (x \right ) f^{\prime }\left (x \right )-y f^{\prime }\left (x \right ) \\ \end{align*}

0.385

4917

7458

\begin{align*} \frac {t y^{\prime }}{y}+1+\ln \left (y\right )&=0 \\ \end{align*}

0.385

4918

10060

\begin{align*} x^{\prime }&=7 x+y \\ y^{\prime }&=-4 x+3 y \\ \end{align*}

0.385

4919

10349

\begin{align*} y^{\prime } x +y&=x \\ \end{align*}
Series expansion around \(x=0\).

0.385

4920

12889

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+a \,x^{v} y^{n}&=0 \\ \end{align*}

0.385

4921

13153

\(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\)

N/A

N/A

N/A

0.385

4922

14066

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\ \end{align*}

0.385

4923

15228

\begin{align*} y^{\prime \prime }+9 y&=24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.385

4924

15272

\begin{align*} x^{\prime }+y^{\prime }&=y \\ x^{\prime }-y^{\prime }&=x \\ \end{align*}

0.385

4925

16822

\begin{align*} y^{\prime }+\frac {2 y}{2 x -1}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.385

4926

18669

\begin{align*} x^{\prime }&=-x-4 y \\ y^{\prime }&=x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= -3 \\ \end{align*}

0.385

4927

20489

\begin{align*} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\ \end{align*}

0.385

4928

21470

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{3} \\ \end{align*}

0.385

4929

23657

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=3 t^{3}-9 t^{2}-5 t +1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

0.385

4930

24065

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x} \\ \end{align*}

0.385

4931

25471

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= -1 \\ \end{align*}

0.385

4932

7378

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.386

4933

7656

\begin{align*} y^{\prime }-y x&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

0.386

4934

11001

\begin{align*} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}

0.386

4935

16176

\begin{align*} y^{\prime }&=\frac {x -1}{x +1} \\ y \left (0\right ) &= 8 \\ \end{align*}

0.386

4936

20102

\begin{align*} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}}&=1 \\ \end{align*}

0.386

4937

23639

\begin{align*} y^{\prime \prime \prime }-27 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 6 \\ y^{\prime \prime }\left (0\right ) &= 18 \\ \end{align*}
Using Laplace transform method.

0.386

4938

23694

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.386

4939

23833

\begin{align*} y^{\prime }&=t \ln \left (t \right ) \\ \end{align*}

0.386

4940

3413

\begin{align*} {y^{\prime }}^{2}-y^{2}&=0 \\ \end{align*}

0.387

4941

5466

\begin{align*} x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y&=0 \\ \end{align*}

0.387

4942

7381

\begin{align*} y^{\prime }&=4 y^{2}-3 y+1 \\ \end{align*}

0.387

4943

7957

\begin{align*} y&=y^{\prime } x -2 {y^{\prime }}^{2} \\ \end{align*}

0.387

4944

9368

\begin{align*} y^{\prime }&=x -y \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.387

4945

10976

\begin{align*} x^{2} \left (4 x +3\right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (4 x +3\right ) y&=0 \\ \end{align*}

0.387

4946

12891

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.387

4947

18387

\begin{align*} \left (x +1\right ) y^{\prime }-n y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.387

4948

23786

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=2 y \\ \end{align*}

0.387

4949

540

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=6 x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -2 \\ \end{align*}

0.388

4950

580

\begin{align*} x^{\prime }&=\frac {y}{2} \\ y^{\prime }&=-8 x \\ \end{align*}

0.388

4951

2681

\begin{align*} y^{\prime \prime }-2 y^{\prime }+7 y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.388

4952

2774

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

0.388

4953

3881

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-x_{2} \\ \end{align*}

0.388

4954

5482

\begin{align*} \left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b&=0 \\ \end{align*}

0.388

4955

6432

\begin{align*} y y^{\prime \prime }&=-y^{2} x^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\ \end{align*}

0.388

4956

10591

\begin{align*} 36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y&=0 \\ \end{align*}

0.388

4957

15811

\begin{align*} y^{\prime }&=1-2 y \\ \end{align*}

0.388

4958

17025

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x^{2}} \\ \end{align*}

0.388

4959

20936

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=-2 x+2 y \\ \end{align*}

0.388

4960

23814

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=-x+2 y \\ \end{align*}

0.388

4961

445

\begin{align*} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\ y \left (3\right ) &= 2 \\ y^{\prime }\left (3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=3\).

0.389

4962

467

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.389

4963

7034

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (2 x +y\right )&=0 \\ \end{align*}

0.389

4964

9064

\begin{align*} \left (x +1\right ) y^{\prime }&=x \\ \end{align*}

0.389

4965

10614

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x&=0 \\ \end{align*}

0.389

4966

11025

\begin{align*} 4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\ \end{align*}

0.389

4967

12897

\begin{align*} x^{2} y^{\prime \prime }&=a \left (y^{n}-y\right ) \\ \end{align*}

0.389

4968

13202

\begin{align*} y^{\prime }&=f \left (y\right ) \\ \end{align*}

0.389

4969

14741

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.389

4970

16780

\begin{align*} y^{\prime \prime }-4 y^{\prime }+40 y&=122 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

0.389

4971

16820

\begin{align*} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.389

4972

16864

\begin{align*} y^{\prime }-{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.389

4973

17661

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 y^{\prime } x&=-8 \\ \end{align*}

0.389

4974

22084

\begin{align*} y^{\prime }+5 y&=0 \\ \end{align*}

0.389

4975

432

\begin{align*} \left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.390

4976

572

\begin{align*} x^{\prime \prime }+4 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.390

4977

625

\begin{align*} x_{1}^{\prime }&=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.390

4978

2416

\begin{align*} t \left (2-t \right ) y^{\prime \prime }-6 \left (t -1\right ) y^{\prime }-4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(t=1\).

0.390

4979

3406

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x^{2}} \\ \end{align*}

0.390

4980

3419

\begin{align*} y^{\prime }&=\sin \left (3 t \right ) \\ \end{align*}

0.390

4981

6502

\begin{align*} x y y^{\prime \prime }&=x y^{3}+a y y^{\prime }+x {y^{\prime }}^{2} \\ \end{align*}

0.390

4982

8126

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.390

4983

10649

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y&=0 \\ \end{align*}

0.390

4984

10953

\begin{align*} x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

0.390

4985

17338

\begin{align*} y-y^{\prime } t&=-4 {y^{\prime }}^{2} \\ \end{align*}

0.390

4986

17823

\begin{align*} x^{\prime }&=0 \\ y^{\prime }&=-2 y \\ \end{align*}

0.390

4987

19058

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -5 \\ x_{2} \left (0\right ) &= 7 \\ \end{align*}

0.390

4988

19595

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.390

4989

19637

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 5 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.390

4990

20453

\begin{align*} y^{2}-2 y y^{\prime } x +{y^{\prime }}^{2} \left (x^{2}-1\right )&=m \\ \end{align*}

0.390

4991

1867

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=3\).

0.391

4992

4556

\begin{align*} x^{\prime }-2 x-y&=2 \,{\mathrm e}^{t} \\ y^{\prime }-2 y-4 z&=4 \,{\mathrm e}^{2 t} \\ x-z^{\prime }-z&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 9 \\ y \left (0\right ) &= 3 \\ z \left (0\right ) &= 1 \\ \end{align*}

0.391

4993

9067

\begin{align*} y^{\prime } x&=1 \\ \end{align*}

0.391

4994

10350

\begin{align*} y^{\prime } x +y&=1 \\ \end{align*}
Series expansion around \(x=0\).

0.391

4995

14057

\begin{align*} a^{2} y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.391

4996

14276

\begin{align*} x+3 t x^{2} x^{\prime }&=0 \\ \end{align*}

0.391

4997

14407

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=-2 x+4 y \\ \end{align*}

0.391

4998

15983

\begin{align*} x^{\prime }&=2 x+3 y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.391

4999

18700

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=8 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -3 \\ \end{align*}

0.391

5000

22187

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (2 x -1\right ) y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= -2 \\ \end{align*}
Series expansion around \(x=-1\).

0.391