| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5201 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.407 |
|
| 5202 |
\begin{align*}
y^{\prime \prime }-3 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| 5203 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| 5204 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| 5205 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5206 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 5 \\
x_{2} \left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5207 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5208 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5209 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (-x +3\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5210 |
\begin{align*}
\left (1+y^{2} x^{2}\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5211 |
\begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5212 |
\begin{align*}
\left (-y+y^{\prime } x \right ) y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.408 |
|
| 5213 |
\begin{align*}
y^{\prime }-3 y&=\delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5214 |
\begin{align*}
x^{\prime \prime }-s x&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✗ |
0.408 |
|
| 5215 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+2 y&=10 \cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| 5216 |
\begin{align*}
y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.408 |
|
| 5217 |
\begin{align*}
y^{\prime \prime }&=y^{3} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= \frac {\sqrt {2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.409 |
|
| 5218 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| 5219 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.409 |
|
| 5220 |
\begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| 5221 |
\begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| 5222 |
\begin{align*}
y^{\prime }&=y-3 z \\
z^{\prime }&=2 y-4 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| 5223 |
\begin{align*}
y_{1}^{\prime }&=5 y_{1}-2 y_{2} \\
y_{2}^{\prime }&=4 y_{1}-y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| 5224 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=12-6 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| 5225 |
\begin{align*}
\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| 5226 |
\begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=3 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| 5227 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=3 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| 5228 |
\begin{align*}
y^{\prime }&=y^{2}-4 y+2 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
0.410 |
|
| 5229 |
\begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| 5230 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}-y_{2} \\
y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| 5231 |
\begin{align*}
\left (4 x^{2}+16 x +17\right ) y^{\prime \prime }&=8 y \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= 0 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5232 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5233 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5234 |
\begin{align*}
\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5235 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5236 |
\begin{align*}
y^{\prime \prime }-9 y&=13 \sin \left (2 t \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5237 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.411 |
|
| 5238 |
\begin{align*}
3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.411 |
|
| 5239 |
\begin{align*}
x^{\prime }&=t \cos \left (t^{2}\right ) \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5240 |
\begin{align*}
x^{\prime }&=-2 x-3 y \\
y^{\prime }&=3 x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5241 |
\begin{align*}
y^{\prime }&=\left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5242 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime }&={\mathrm e}^{2 x}+\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5243 |
\begin{align*}
x^{\prime }&=5 x+4 y \\
y^{\prime }&=x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5244 |
\begin{align*}
y^{\prime \prime }+4 y&=2 t -8 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5245 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5246 |
\begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5247 |
\begin{align*}
y^{\prime \prime }+9 y&=3 x -6 \\
y \left (0\right ) &= {\frac {1}{3}} \\
y^{\prime }\left (0\right ) &= {\frac {4}{3}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5248 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}-y_{2} \\
y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| 5249 |
\begin{align*}
x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\
x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| 5250 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| 5251 |
\begin{align*}
y y^{\prime \prime }&=-2 y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.412 |
|
| 5252 |
\begin{align*}
y^{\prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| 5253 |
\begin{align*}
y&=2 y^{\prime } x +{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.412 |
|
| 5254 |
\begin{align*}
y^{\prime }&=3 \sqrt {x +3} \\
y \left (1\right ) &= 16 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| 5255 |
\begin{align*}
y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| 5256 |
\begin{align*}
y_{1}^{\prime }&=-y_{1}+2 y_{2} \\
y_{2}^{\prime }&=-2 y_{1}-y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| 5257 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=6 x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5258 |
\begin{align*}
-y+y^{\prime }&=1+{\mathrm e}^{t} t \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5259 |
\begin{align*}
{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5260 |
\begin{align*}
x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.413 |
|
| 5261 |
\begin{align*}
y^{\prime }&=\frac {1}{\left (2+y\right )^{2}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5262 |
\begin{align*}
n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5263 |
\begin{align*}
x^{\prime }&=5 x+2 y \\
y^{\prime }&=-17 x-5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5264 |
\begin{align*}
-8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{2}+\frac {1}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5265 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime }&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 2 \\
y^{\prime \prime }\left (0\right ) &= 8 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5266 |
\begin{align*}
y^{\prime \prime \prime }+y&=18 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 13 \\
y^{\prime \prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5267 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| 5268 |
\begin{align*}
a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.414 |
|
| 5269 |
\begin{align*}
\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.414 |
|
| 5270 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| 5271 |
\begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.414 |
|
| 5272 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.414 |
|
| 5273 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.414 |
|
| 5274 |
\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.414 |
|
| 5275 |
\begin{align*}
y^{\prime }-3 y&=6 \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| 5276 |
\begin{align*}
x_{1}^{\prime }&=-x_{1} \\
x_{2}^{\prime }&=-2 x_{2} \\
x_{3}^{\prime }&=x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| 5277 |
\begin{align*}
x +\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| 5278 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| 5279 |
\begin{align*}
-t y^{\prime \prime }+\left (-2+t \right ) y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.414 |
|
| 5280 |
\begin{align*}
y_{1}^{\prime }&=-2 y_{1}+y_{2} \\
y_{2}^{\prime }&=-4 y_{1}+3 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| 5281 |
\begin{align*}
x^{\prime }&=-3 x+2 y \\
y^{\prime }&=-3 x+4 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5282 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5283 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-4 x_{3} \\
x_{2}^{\prime }&=-x_{1}-x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5284 |
\begin{align*}
y_{1}^{\prime }&=5 y_{1}-6 y_{2} \\
y_{2}^{\prime }&=3 y_{1}-y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5285 |
\begin{align*}
y^{\prime \prime }-2 z y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(z=0\). |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5286 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5287 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5288 |
\begin{align*}
y^{\prime \prime }-2 x^{2} y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5289 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5290 |
\begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.415 |
|
| 5291 |
\begin{align*}
y^{\prime }&=1+\frac {\sec \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5292 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{\mu x} y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (2 \lambda +\mu \right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.415 |
|
| 5293 |
\begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=5 x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5294 |
\begin{align*}
y^{\prime } x&=\sin \left (x^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5295 |
\begin{align*}
x_{1}^{\prime }&=x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5296 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5297 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5298 |
\begin{align*}
y_{1}^{\prime }&=5 y_{1}-3 y_{2} \\
y_{2}^{\prime }&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| 5299 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| 5300 |
\begin{align*}
y_{1}^{\prime }&=-11 y_{1}+4 y_{2} \\
y_{2}^{\prime }&=-26 y_{1}+9 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.416 |
|