2.3.53 Problems 5201 to 5300

Table 2.637: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

5201

10612

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y&=0 \\ \end{align*}

0.407

5202

16835

\begin{align*} y^{\prime \prime }-3 x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.407

5203

23784

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

0.407

5204

24783

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3}&=0 \\ \end{align*}

0.407

5205

434

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

5206

613

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 5 \\ x_{2} \left (0\right ) &= -3 \\ \end{align*}

0.408

5207

1364

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

5208

1447

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.408

5209

4026

\begin{align*} x^{2} y^{\prime \prime }+x \left (-x +3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

5210

8746

\begin{align*} \left (1+y^{2} x^{2}\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\ \end{align*}

0.408

5211

9457

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=3 x+y \\ \end{align*}

0.408

5212

13027

\begin{align*} \left (-y+y^{\prime } x \right ) y^{\prime \prime }+4 {y^{\prime }}^{2}&=0 \\ \end{align*}

0.408

5213

15724

\begin{align*} y^{\prime }-3 y&=\delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.408

5214

21642

\begin{align*} x^{\prime \prime }-s x&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.408

5215

21722

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+2 y&=10 \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

0.408

5216

24097

\begin{align*} y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.408

5217

3273

\begin{align*} y^{\prime \prime }&=y^{3} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= \frac {\sqrt {2}}{2} \\ \end{align*}

0.409

5218

8576

\begin{align*} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.409

5219

9363

\begin{align*} y^{\prime }-\frac {y}{x}&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.409

5220

14379

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=x+y \\ \end{align*}

0.409

5221

18026

\begin{align*} {y^{\prime }}^{2}-4 y&=0 \\ \end{align*}

0.409

5222

21748

\begin{align*} y^{\prime }&=y-3 z \\ z^{\prime }&=2 y-4 z \\ \end{align*}

0.409

5223

25364

\begin{align*} y_{1}^{\prime }&=5 y_{1}-2 y_{2} \\ y_{2}^{\prime }&=4 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.409

5224

3943

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=12-6 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

0.410

5225

5522

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=x^{2} \\ \end{align*}

0.410

5226

14398

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=3 x+2 y \\ \end{align*}

0.410

5227

15468

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=3 x-y \\ \end{align*}

0.410

5228

15886

\begin{align*} y^{\prime }&=y^{2}-4 y+2 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.410

5229

23718

\begin{align*} 6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.410

5230

25366

\begin{align*} y_{1}^{\prime }&=2 y_{1}-y_{2} \\ y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

0.410

5231

446

\begin{align*} \left (4 x^{2}+16 x +17\right ) y^{\prime \prime }&=8 y \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= 0 \\ \end{align*}
Series expansion around \(x=-2\).

0.411

5232

631

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

0.411

5233

634

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\ \end{align*}

0.411

5234

1380

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.411

5235

2798

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-2 y \\ \end{align*}

0.411

5236

3945

\begin{align*} y^{\prime \prime }-9 y&=13 \sin \left (2 t \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.411

5237

10650

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\ \end{align*}

0.411

5238

12964

\begin{align*} 3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\ \end{align*}

0.411

5239

14203

\begin{align*} x^{\prime }&=t \cos \left (t^{2}\right ) \\ x \left (0\right ) &= 1 \\ \end{align*}

0.411

5240

15982

\begin{align*} x^{\prime }&=-2 x-3 y \\ y^{\prime }&=3 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.411

5241

16980

\begin{align*} y^{\prime }&=\left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \\ \end{align*}

0.411

5242

18228

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&={\mathrm e}^{2 x}+\sin \left (2 x \right ) \\ \end{align*}

0.411

5243

18451

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=x+2 y \\ \end{align*}

0.411

5244

21945

\begin{align*} y^{\prime \prime }+4 y&=2 t -8 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.411

5245

22222

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.411

5246

23810

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=x \\ \end{align*}

0.411

5247

24054

\begin{align*} y^{\prime \prime }+9 y&=3 x -6 \\ y \left (0\right ) &= {\frac {1}{3}} \\ y^{\prime }\left (0\right ) &= {\frac {4}{3}} \\ \end{align*}
Using Laplace transform method.

0.411

5248

25372

\begin{align*} y_{1}^{\prime }&=2 y_{1}-y_{2} \\ y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

0.411

5249

626

\begin{align*} x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.412

5250

1365

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.412

5251

6436

\begin{align*} y y^{\prime \prime }&=-2 y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

0.412

5252

7646

\begin{align*} y^{\prime }-2 y x&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.412

5253

15388

\begin{align*} y&=2 y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

0.412

5254

16185

\begin{align*} y^{\prime }&=3 \sqrt {x +3} \\ y \left (1\right ) &= 16 \\ \end{align*}

0.412

5255

17044

\begin{align*} y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

0.412

5256

25371

\begin{align*} y_{1}^{\prime }&=-y_{1}+2 y_{2} \\ y_{2}^{\prime }&=-2 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

0.412

5257

582

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=6 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.413

5258

9612

\begin{align*} -y+y^{\prime }&=1+{\mathrm e}^{t} t \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.413

5259

11812

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

0.413

5260

12898

\begin{align*} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right )&=0 \\ \end{align*}

0.413

5261

15858

\begin{align*} y^{\prime }&=\frac {1}{\left (2+y\right )^{2}} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.413

5262

19589

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.413

5263

19654

\begin{align*} x^{\prime }&=5 x+2 y \\ y^{\prime }&=-17 x-5 y \\ \end{align*}

0.413

5264

20508

\begin{align*} -8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{2}+\frac {1}{x^{2}} \\ \end{align*}

0.413

5265

21917

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 2 \\ y^{\prime \prime }\left (0\right ) &= 8 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.413

5266

23661

\begin{align*} y^{\prime \prime \prime }+y&=18 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 13 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.413

5267

25327

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.413

5268

6389

\begin{align*} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.414

5269

6854

\begin{align*} \frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}}&=0 \\ \end{align*}

0.414

5270

9072

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x} \\ y \left (1\right ) &= 3 \\ \end{align*}

0.414

5271

9820

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } x -y&=0 \\ \end{align*}

0.414

5272

10560

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.414

5273

10626

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y&=0 \\ \end{align*}

0.414

5274

13191

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\)

N/A

N/A

N/A

0.414

5275

16277

\begin{align*} y^{\prime }-3 y&=6 \\ y \left (0\right ) &= -2 \\ \end{align*}

0.414

5276

21315

\begin{align*} x_{1}^{\prime }&=-x_{1} \\ x_{2}^{\prime }&=-2 x_{2} \\ x_{3}^{\prime }&=x_{3} \\ \end{align*}

0.414

5277

24140

\begin{align*} x +\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\ \end{align*}

0.414

5278

24710

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

0.414

5279

25243

\begin{align*} -t y^{\prime \prime }+\left (-2+t \right ) y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

0.414

5280

25385

\begin{align*} y_{1}^{\prime }&=-2 y_{1}+y_{2} \\ y_{2}^{\prime }&=-4 y_{1}+3 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -2 \\ \end{align*}

0.414

5281

589

\begin{align*} x^{\prime }&=-3 x+2 y \\ y^{\prime }&=-3 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.415

5282

623

\begin{align*} x_{1}^{\prime }&=3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.415

5283

1018

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-4 x_{3} \\ x_{2}^{\prime }&=-x_{1}-x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{3} \\ \end{align*}

0.415

5284

2288

\begin{align*} y_{1}^{\prime }&=5 y_{1}-6 y_{2} \\ y_{2}^{\prime }&=3 y_{1}-y_{2} \\ \end{align*}

0.415

5285

3506

\begin{align*} y^{\prime \prime }-2 z y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(z=0\).

0.415

5286

3989

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.415

5287

4049

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.415

5288

4592

\begin{align*} y^{\prime \prime }-2 x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.415

5289

7370

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.415

5290

9747

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

0.415

5291

9996

\begin{align*} y^{\prime }&=1+\frac {\sec \left (x \right )}{x} \\ \end{align*}

0.415

5292

13292

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\mu x} y^{2}+\lambda y-a \,b^{2} {\mathrm e}^{\left (2 \lambda +\mu \right ) x} \\ \end{align*}

0.415

5293

15769

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=5 x+y \\ \end{align*}

0.415

5294

16193

\begin{align*} y^{\prime } x&=\sin \left (x^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

0.415

5295

19038

\begin{align*} x_{1}^{\prime }&=x_{2}-x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}

0.415

5296

23600

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}

0.415

5297

23605

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.415

5298

25386

\begin{align*} y_{1}^{\prime }&=5 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.415

5299

1442

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-2 x_{2} \\ \end{align*}

0.416

5300

2286

\begin{align*} y_{1}^{\prime }&=-11 y_{1}+4 y_{2} \\ y_{2}^{\prime }&=-26 y_{1}+9 y_{2} \\ \end{align*}

0.416